deepseek本地部署及测试(重点测试)

1.  使用ollama拉取模型;

2.  AI界面使用:

① Page Assist(Edge插件,无需安装,下载即用,室友fty推荐);

② 使用Chatbox应用,模型提供方选择ollama,即可使用多个本地模型,(好用推荐,有多种内置语境,思考过程和最后结果分明)

③ 使用海鹦OfficeAI助手(为了WPS内使用下载的,不使用WPS不建议用);

3. 模型性能测试:

测试环境:联想Thinkbook16p2023版,64G内存,模型都在D盘,Nvidia Laptop4050显卡,6GB显存(专用),32GB共享内存(给集显使用),intel-i5-13500H CPU,插电测试

测试:
deepseek r1 1.5B:顺畅运行,思考和输出基本不超过1秒;内存上升不明显,显卡占用不明显;

deepseek r1 8B:   每秒20-30个字(目测),内存占用上升2GB左右,专用显存占用4GB左右,输出速度能接受;

deepseek r1 14B:每秒15-20字左右(目测),内存占用上升6GB左右,显存占用4.5GB,共享内存占用4.8GB左右,写代码能接受;

千问qwq 32B:内存占用上升20GB左右,GPU专用4.3GB,共享GPU占用15GB左右,每秒输出5-10个字(目测),很慢;

4. 总结

当前电脑配置下,8B及以下可以对话使用,14B可以用来编写代码,更大的模型基本处于不可用状态,耗费时间太长,非必要不可使用;

5. 思考

① 共享内存占用不高,是因为锐炬核显计算能力上限了吗?请教有什么工具可以看到核显的占用程度?

② 如果只用核显(CPU)来运行,最大可以运行多少B的模型?无法测试因为不知道怎么关闭独显的计算,只切换显示模式还是会调用NVIDIA显卡,请教;

③ 当前除了32B的,其余感觉还是有些蠢蠢的,不如主流的一些AI聪明,希望以后还能出现更 高效的模型,在算力更少的硬件上有更好的效果;

日常记录使用过程,防止以后遗忘,不一定正确,如果有用可以给文章点个赞,谢谢!

### 如何在本地部署 DeepSeek 数据库 为了在本地环境中成功部署 DeepSeek 数据库,可以遵循以下方法: #### 准备工作 确保安装了必要的软件环境,包括但不限于 Python、Docker 和 Docker Compose。这些工具对于运行容器化应用至关重要。 #### 创建 SQL 文件 生成 `.sql` 文件来转储数据库模式和内容是远程部署的第一步[^1]。虽然此操作通常用于托管环境中的部署,但在本地测试时同样适用。创建一个包含所有表结构以及初始数据的脚本文件有助于快速初始化新的开发或测试实例。 ```bash pg_dump -U username -F c -b -v -f "database_name.sql" dbname ``` 这段命令适用于 PostgreSQL 数据库;如果使用其他类型的数据库管理系统,则需调整相应参数。 #### 配置 Docker 容器 当涉及到更复杂的设置如 Flask 应用程序时,在 Google Cloud Platform 上通过 Docker 进行部署提供了很好的指导思路[^3]。尽管目标平台不同,但基本概念相似——即利用 Dockerfile 来定义服务镜像,并借助 docker-compose.yml 文件协调多个关联的服务组件一起启动。 对于本地部署而言,重点在于正确配置 `docker-compose.override.yml` 或者直接编辑默认的 compose 文件以适应个人电脑上的资源情况(比如内存分配)。同时也要注意修改网络连接部分以便于访问外部 API 接口或其他依赖项。 #### 初始化数据库 完成上述准备工作之后,可以通过 SSH 连接到服务器并执行特定的任务指令来准备生产环境下的数据库[^2]。然而,在本地环境下可以直接打开终端窗口输入类似下面这样的命令来进行相同的操作: ```bash rake development db:bootstrap ``` 这会依据项目需求自动处理迁移、种子数据加载等一系列任务,使得新建立起来的数据存储层能够立即投入使用而无需额外的手动干预。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值