DeepSeek-R1模型架构解读

01.引言

本文深入探讨了 DeepSeek-R1 模型的架构。让我们追溯DeepSeek-R1模型从输入到输出的全过程,找出架构中的新进展和关键部分。DeepSeek-R1模型主要基于 DeepSeek-V3-Base 模型架构。本文旨在介绍其设计的所有核心方面。

02.输入上下文长度

DeepSeek-R1 的输入上下文长度为 128K。

DeepSeek-R1 从其基础模型 DeepSeek-V3-Base继承了 128K的上下文长度。最初,DeepSeek-V3 采用 4K 上下文长度进行预训练。然后,利用 YaRN 技术,通过两阶段的上下文长度扩展,先将其增加到 32K,再增加到 128K。

YaRN(Yet another RoPE extensioN method)是一种旨在有效扩展使用旋转位置嵌入(RoPE)的大型语言模型(LLM)上下文窗口的技术。RoPE 使用旋转矩阵编码位置信息,而 YaRN 则修改了这些旋转频率的缩放方式。它不是简单地外推频率(这通常会导致性能下降),而是平滑地插值和调整这些频率,从而更好地泛化到更长的语境中。在不进行大规模重新训练的情况下扩展模型上下文长度的计算效率很高,而且非常实用。

该技术细节可以参考论文:

Title: <<YaRN: Efficient Context Window Extension of Large Language Models>>

Arxiv: https://arxiv.org/pdf/2309.00071

03.DeepSeek R1 总层数

DeepSeek-R1 由一个嵌入层、61 个transformer层和输出阶段多个预测头组成。

DeepSeek-R1 采用多头潜在注意力层(MLA),而不是所有transformer层的标准多头注意力层(MHA)。前三个transformer层与其他层不同,使用的是标准前馈网络(FFN)层。从第 4 层到第 61 层,专家混合层(MoE)取代了前馈网络层。后续将有文章专门探讨 MLA 和 MoE 的技术细节。

DeepSeek-R1 中的transformer层

完整的模型结构总览如下:

DeepSeek-R1 架构详情

DeepSeek-V3 利用多Token预测(MTP)技术,使用最后两个预测头预测下两个Token。第二个预测Token的接受率在 85% 到 90% 之间,在各种生成主题中都表现出很高的可靠性。DeepSeek-R1(DeepSeek-V3)共包含 671B 个参数,其中针对每个Token共有37B 个参数被激活。

04.DeepSeek-R1的前三层

前 3 层由多头潜在注意力层(MLA)和标准 FFN 层组成。这些层通常被称为 “密集 LLM 层”,因为 FFN 层没有被 MoE 层取代,而 MoE 层被认为是比较稀疏的。

DeepSeek-R1 的前三层Transformer Block

05.DeepSeek-R1的4到61层

这些MOE Transformer Block层主要包括 MLA 层和 MoE 层。我们将在接下来的后续文章中了解什么是 MLA 层和 MoE 层以及它们的工作原理。

DeepSeek MoE层

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值