前言
利用DeepSeek
怎么打造自己的知识库,让DeepSeek
成为个人或公司的专属AI助手。
在信息爆炸时代,真正的竞争力不在于掌握多少数据,而在于如何让AI将碎片化知识转化为可执行的智慧。以下是通过DeepSeek
构建专属知识库的详细步骤。
1. WebUI可视化
在进行专属知识库之前我们先安装一个WebUI可视化插件 —— Page Assist
。
Page Assist
是本地 AI
模型的 Web UI
,可以使用本地运行的 AI
模型来辅助进行网络浏览,利用本地运行的AI
模型,在浏览网页时进行交互,或者作为本地AI模型提供者(如Ollama、Chrome AI
等)的网页界面。
仓库地址:https://github.com/n4ze3m/page-assist
当前功能:
-
各类任务的侧边栏
-
支持视觉模型
-
本地AI模型的简约网页界面
-
网络搜索功能
-
在侧边栏与PDF进行对话
-
与文档对话(支持pdf、csv、txt、md、docx格式)
要把DeepSeek
可视化,首先在扩展中的管理扩展页面,搜索找到Page Assist
获取完成后,就可以在扩展中看到PageAssist
插件,点击对应的插件就可以直接使用。
进入插件后,选择我们上面下载好的DeepSeek
模型,然后就可以跟DeepSeek
进行可视化对话了,如果需要获取最新的数据,需要打开下方的联网开关。
到这里,DeepSeek
的WebUI
可视化就完成了。
2. 利用本地知识库训练AI
实现数据投喂训练AI,需要下载nomic-embed-text
嵌入式模型和安装AnythingLLM
软件。
2.1下载nomic-embed-text:
在终端输入
`ollama pull nomic-embed-text `
回车下载nomic-embed-text
嵌入式模型(后面做数据投喂会用到)。
2.2安装AnythingLLM:
进入官网(https://anythingllm.com),选择对应系统版本的安装包进行下载
安装完成打开软件之后,点击**“开始”**
选中AnythingLLM点击箭头,进行下一步。
输入工作区名称,点击下一步箭头。
点击【设置】,里面可以设置模型、界面显示语言等。
2.3AnythingLLM设置
在软件设置里面,LLM首选项界面,提供商选择Ollama
,Ollama Model选择你前面下载的DeepSeek-R1
系列模型1.5b~671b
,然后点击Save changes
。
在Embedder首选项界面,嵌入引擎提供商选择
Ollama
,Ollama Embedding Mode选择nomic-embed-text
模型,然后点击保存更改。
①点击工作区设置
,②点击聊天设置,③工作区LLM提供者选择Ollama
,④工作区聊天模型选择deepseek-r1
模型,⑤然后点击Update workspace agent
。
代理配置界面,工作区代理LLM提供商选择Ollama
,工作区代理模型选择deepseek-r1
,然后点击Update workspace agent
。
最后就是数据投喂训练AI:
在工作区界面,点击上传
图标按钮。
点击Save and Embed
开始训练模型
发现它已经使用了自己投喂的数据进行学习
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。