一、引言:当Dify工作流遇见MCP协议
通过MCP协议,我们大大简化了AI Agent编写的门槛,原来很多工作流实现的复杂操作,通过一个dify Agent+提示词+各种MCP工具,就可以把Agent培养成一个超级助手。
那么,我们在Dify里实现的各种工作流,是不是也可以作为一个MCP Server,对外输出工具能力呢??
这样,我们本地实现的这些工作流及其能力,无需进行二次开发,可以被高效复用到别的MCP Client工具和应用场景里。
今天就让我们一起来看看如何实现。(不过需要注意的是,为避免潜在的数据安全风险,官方也仅建议做私有网络环境中使用MCP Server插件)
二、准备:提前需要准备什么?
在开始前,请确保:
• 已部署Dify实例
• 待发布的dify工作流(建议选择已跑通流程)
• 支持MCP协议的客户端(如Cursor,Cherry Studio)
三、手把手实战:从工作流到智能插件的蜕变
1️⃣ 插件安装:给你的Dify装上"万能转换头"
-
进入Dify控制台 -> 插件市场
-
搜索"mcp-server"
-
点击安装,等待系统完成
这相当于给Dify配备了一个随身翻译,让本来说方言的工作流都能通过它说普通话(MCP)。
2️⃣ 端点配置:为工具添加一份说明书
进入插件配置界面,点击“+”新增工具
设置API端点:
- Endpoint Name:Endpoint 名称=文生图助手
- App:选择要发布为 MCP Server 的 Dify 应用,选择之前发布过的“智能绘画大师”。
- App Type:应用类型=Workflow。
- App Input Schema:定义应用的输入参数,帮助外部系统理解与该应用的交互方式,格式为 JSON。
接下来,重点介绍的是 Schema 这段json格式如何构造。
name=你要对外暴露的应用名称;
description:描述这个工具的用户,
inputSchema:定义需要输入的参数,在properties里定义参数。
如下,我这个工作流的目标是简单输入一段话,让AI帮你进行提示词生成并且调用Flux生成一张高质量的图片。
因此,输入为“想要的图片的文字描述”,类型是“文本”。
{"name": "drawing master”,"description": “generate the image based on the input description of the user”,"inputSchema": {"title": “drawing master description ”,"type": "object","properties": {"query": {"title": "User Query","description": "The user's description of the image to be generated by drawing master.”,"type": "string"},},"required": ["query"]}}
3️⃣ 服务发布:
完成配置后,点击保存系统会自动生成端点URL
安全提示:该URL相当于你家门禁密码,建议妥善保存,敏感数据工作流建议内网部署。
四、应用测试:Cursor
打开Cursor,在设置- MCP 里添加配置:
{ "mcpServers": { "drawing master": { "url":"https:/localhost/v1/e/mxxxxx/sse" } } }
目前,有个服务器连接错误提示,还没解决掉,后续在留言里更新下处理过程。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。