在做数据分析时,经常会有这样的困扰:面对几种相似的方法,既不清楚它们各自的使用场景,也无法分清它们之间的差别,一念之差就可能选错方法。
如果你也有这样的困扰,建议按照下图找到对应的研究方法,理清不同方法的区别与使用场景,以便选出正确的方法进行分析。
今天将常用的数据分析方法进行一个分类汇总说明,整理如下图:
**1、基本描述统计
**
基本描述统计分析包括频数分析、描述分析、分类汇总;是对收集的数据进行基本的说明。
-
频数分析一般使用频数、百分比、饼图等形式进行描述。
-
描述分析常见的指标有平均值、标准差、最大值、最小值、中位数等;更深入的描述指标包括百分位数、峰度、偏度、变异系数等。
-
分类汇总用于研究不同分类时的汇总情况,输出的指标为汇总结果。比如不同区域分类项,销售额(汇总项)的差异情况。
2、差异关系研究
常见的差异关系研究方法包括方差分析、t检验、卡方检验、非参数检验。
(1)方差分析
方差分析用于进行定类数据与定量数据之间的差异关系研究;按照研究内容和数据类型等不同,可分为以下几类:
(2)t检验
t检验,用于分析定类数据与定量数据之间的差异情况,按照研究内容和数据类型等不同,可分为以下几类:
(3)卡方检验
卡方检验,用于分析定类数据与定类数据之间的差异情况,按照研究内容和数据类型等不同,可分为以下几类:
(4)非参数检验
前面讲的常见的数据差异性分析方法:例如方差分析、t检验都属于参数检验的范围。参数检验一般需要数据满足正态性、方差齐性。与参数检验相对的是非参数检验,非参数检验不对总体的分布形态做假定,所以当数据不正态或方差不齐时,可使用非参数检验进行差异性研究。
参数检验对应非参数秩和检验如下:
3、影响关系研究
影响关系研究包括进行相关分析、回归分析、logit回归分析三大类。
(1)相关分析
相关分析可分为以下三类:
(2)回归分析
回归分析主要进行影响关系研究,可以细分为二十几种,由于篇幅有限,这里仅介绍比较常用的回归分析方法,感兴趣同学可以登陆SPSSAU进行学习。
(3)logit回归分析
当研究X对Y的影响时,如果因变量Y为定类数据,则应该使用logit回归分析。
4、信息浓缩方法
信息浓缩常见方法为因子分析、主成分分析。
因子分析和主成分分析都是信息浓缩的方法,即将多个分析项信息浓缩成几个概括性指标。如果希望进行将指标命名,SPSSAU建议使用因子分析。原因在于因子分析在主成分基础上,多出一项旋转功能,该旋转目的即在于命名。
5、聚类分析方法
聚类分析以多个研究标题作为基准,对样本对象进行分类。
6、信度分析
信度分析的方法主要有以下三种:Cronbach α信度系数法、折半信度法、重测信度法。
7、效度分析
效度有很多种,可分为四种类型:内容效度、结构效度、区分效度、聚合效度。
8、中介/调节
中介作用、调节作用、调节中介作用分析说明如下:
9、权重研究
权重研究是用于分析各因素或指标在综合体系中的重要程度,最终构建出权重体系。权重研究有多种方法:
10、模型研究方法
当需要研究多个变量之间的关系情况时,通常可构建统计模型用于分析及预测,分析方法说明见下表:
11、一致性研究方法
一致性检验的目的在于比较不同方法得到的结果是否具有一致性。检验一致性的方法有很多比如:Kappa检验、ICC组内相关系数、Kendall W协调系数等。
12、可视化分析方法
常用的可视化分析方法如下:
一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
三、精品Python学习书籍
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、Python视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、Python练习题
检查学习结果。
七、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
