随着科技的迅猛发展,显卡在人工智能、数据处理、高性能计算等领域的应用变得至关重要。本文将介绍几家主要的国产显卡厂商及其产品,并回顾英伟达GPU的架构演进,分析其在不同应用场景中的选择理由,探讨国产显卡与英伟达显卡的优劣势。
一、国产显卡主要厂商及产品
- 华为(HiSilicon)
- 昇腾(Ascend)系列:如昇腾910和昇腾310,专为AI计算设计,适用于数据中心和边缘计算。
- 比特大陆(Bitmain)
- Sophon(算丰)系列:包括Sophon BM1684、BM1682等,适用于AI推理和训练任务。
- 寒武纪(Cambricon)
- MLU(Machine Learning Unit)系列:如MLU270、MLU220等,适用于多种AI应用场景。
- 中科曙光(Sugon)
- DCU(Deep Computing Unit)系列:适用于数据中心的高性能计算任务。
- 景嘉微(Jingjia Micro)
JM系列:如JM5400、JM7200等,广泛应用于军事和工业领域,适用于图形渲染和嵌入式应用。
二、英伟达GPU架构演进史
了解国产显卡后,我们也回顾一下英伟达GPU的架构演进,看看其算力发展历程:
- Volta架构
-
第一代AI加速卡,专为AI运算设计的张量运算(Tensor Core)架构。
-
代表型号:Tesla V100。
- Turing架构
- 第二代张量计算架构,代表型号:T4。
- Ampere架构
-
第三代张量运算架构,代表型号:A100系列显卡。
-
芯片工艺升级,SM数量翻倍到108个,加入FP8运算模式,算力达624 TFLOPS (FP8)。
- Hopper架构
-
第四代架构,代表型号:H100系列显卡。
-
SM数提升至132个,FP16运算能力达到512次/周期,算力达1978 TFLOPS (FP8)。
- Blackwell架构
-
第五代架构,代表型号:Blackwell B200。
采用全新的FP4数据单元,推理任务算力达20 Peta FLOPS,FP8算力达10 PFLOPS,主频2.1GHz,SM数600个。
三、A100 VS A800, H100 VS H800
由于美国对华半导体出口限制,英伟达推出了A800和H800作为替代产品:
-
A800:将A100的NVLink传输速率降至400GB/s,其他参数基本一致。
-
H800:NVLink传输速率降至400GB/s,双精度算力几乎归零,对HPC领域影响较大。
四、选择英伟达显卡的原因
-
性能和稳定性:英伟达显卡在高端计算、深度学习、科学计算等领域表现优异,广泛应用于Tesla和A100系列。
-
生态系统和支持:英伟达拥有强大的软件生态系统,CUDA平台在高性能计算、机器学习等领域有着广泛应用和成熟的开发工具支持。
-
市场认可度:英伟达显卡在全球市场上有很高的认可度,许多国际大企业和研究机构依赖英伟达的产品,增加了其可信度。
五、选择国产显卡的原因
-
成本效益:国产显卡价格更具竞争力,适合预算有限的中小企业或对性能要求不高的应用场景。
-
政策支持:中国政府对国产科技产品有政策上的扶持,包括采购倾斜和资金支持,促使企业更多地使用国产显卡。
-
自主可控:在一些敏感行业和领域,使用国产显卡有助于减少对外依赖,增强自主可控性,降低供应链风险。
-
市场需求:一些国产显卡在特定应用场景中取得了不错的成绩,适合特定的国产应用或系统集成。
-
企业要求:如果是国企或者政府相关单位会要求使用国产显卡。
六、具体应用场景的选择
-
游戏和普通办公:在这些场景中,企业可能会更多地选择成本较低的国产显卡,特别是在性价比方面有优势。
-
高性能计算和AI:对于需要强大计算能力的企业,如人工智能公司、科研机构,英伟达显卡仍然是主流选择,尤其是其在AI和深度学习方面的优势明显。
-
政策导向行业:如政府项目、国防、关键基础设施等领域,选择国产显卡可能更多。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。