RankRAG:通过 fine-tuning 方式来实现检索文本的排序和答案生成

之间介绍过几种LLM+RAG框架:

1)self-RAG:引入特殊token来实现检索的控制;

2)过滤不相关检索片段:训练一个过滤模型,实现对RAG中检索片段的噪声过滤;

3)FIT-RAG:从过滤检索信息+提高检索信息+query是否需要检索判断这三个方面来优化LLLM+RAG框架;

上述三种方式的存在的缺点:1)self-RAG引入特殊token,导致训练数据标注难度加大,而且在解码中增加额外的判断成本;2)需要训练一个额外的过滤模型,如bert等,但是独立于生成的,会带来偏差;3)也需要额外训练一个判断模型,如T5,且还要对query是否进行检索信息进行判断,计算流程更为复杂。

那能不能LLM+RAG过程简化下,不要额外引入新的模型,就用一个LLM来提升生成结果?本次就分享一个从该思路来优化LLM+RAG的方法:<RankRAG: Unifying Context Ranking with Retrieval-Augmented Generation in LLMs>

其思路主要为:

1)在训练过程中就增加与生成相关的子任务训练,如检索片段的判断任务等;

2)在推理过程,可以借助LLM在子任务的结果,来辅助query的回答,进而提升整体效果;

其目的:通过fine-tunine的方式就可以让一个LLM同时具备对检索内容的质量判断和query的生成的能力,就不需要额外引入其他小模型。

上述流程图,在训练过程中,分两个阶段:

1)Stage-I:采用正常的SFT训练进行模型通用任务的对齐;

2)Stage-II:设计RankRAG指令,进一步进行微调,其中任务包括检索排序和答案生成等任务,具体如下:

在推理阶段,也是分两步:

1)第一步:是从检索器里召回top-N个相关片段,然后利用LLM对这些片段进行打分,选择top-K作为最终的检索片段;因为在训练中,让LLM具备了对片段进行打分的能力。

2)第二步:结合top-K片段和query,输入LLM做最后的回答。

总的来说,论文的核心在于在训练中加入检索相关的任务的训练,并让LLM具备对检索片段进行排序打分的能力,其不好之处:推理时候需要调两次LLM,增加了推理时间。

看看RankRAG的实验效果:

(1)在8B范围内,Llama3-RankRAG 8B在9个数据集上都取得最好的效果,甚至超过RA-DIT 65B模型;

(2)Llama3-RankRAG 70B好于Llama3-ChatQA-1.5 70B,高于平均2.5点,此外也好于chatgpt系列的RAG模型;

(3)RankRAG 在长尾数据集(PopQA)和多轮对话(2WikimQA)这类难度比较大的数据集上,相比Chat-1.5有10个点的提升,这也说明检索效果提升带来的增益。

在消融实验中:

(1)若不在推理过程进行重排,则有近3个点的下降;

(2)若不带RQA或RAR两个微调任务(训练中的第二个阶段中的任务),则有近1个点的下降;

(3)如果训练中只进行SFT模型,不进行Stage-II训练,则有10个点下降,这说明论文中设计的Stage-II指令任务的有效性。

总结一下:RankRAG框架思路比较简洁,且操作起来也很容易:就是增加一些检索相关则子任务训练,然后让LLM具备重排打分的能力,消除需要额外训练一个模型的成本,且也让检索排序和生成在模型层面保持一致。虽然在推理过程中,需要多调一次大模型,增加了推理负担,但实验来看,直接推理,不用重排,也是有一定的提升。这样在实践中:我们可以直接借鉴其Stage-II训练,可能就能有明显的提升。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

  • 20
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
VITS(Variational Inference for Text-to-Speech)是一种端到端的文本到语音合成方法,它可以将文本转化为自然流畅的语音。VITS-Fast Fine-Tuning是对VITS模型进行快速微调的方法。 在传统的语音合成任务中,需要大量的语音对齐标注数据来训练模型。然而,这个过程非常耗时和昂贵。VITS-Fast Fine-Tuning的目标就是通过少量的标注数据来快速微调已有的VITS模型,以在新的任务上取得更好的性能。 VITS-Fast Fine-Tuning方法的关键在于使用变分推断(variational inference)来构建先验和后验分布。通过这个方法,我们可以使用其他大型语音合成数据集训练好的模型作为先验分布,然后使用少量目标任务的标注数据来估计后验分布。这样一来,我们就能够在新任务上快速微调VITS模型。 具体而言,VITS-Fast Fine-Tuning的过程分为两步。第一步是预训练,它使用大型语音数据集来训练VITS模型,并生成一个先验分布。第二步是微调,它使用目标任务的标注数据来调整VITS模型的参数,以获得更好的性能。由于预训练的先验分布已经包含了一定的知识,微调的过程可以更快速和高效。 总之,VITS-Fast Fine-Tuning是一种用于快速微调VITS模型的方法。它利用变分推断和预训练的先验分布,通过少量目标任务的标注数据来优化模型性能。这个方法可以加快语音合成模型的训练过程,降低训练的时间和成本。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值