AI 大模型Paper Reading: 结合LLM + MCTS 合成新的数据集fine-tune大模型,提高LLM 推理能力

今天来看一篇新的文章,是由腾讯AI LAB的写的,我的同学也是该文章的一作!所以非常感兴趣看了下!感觉非常impressive! 之前我看过几篇文章关于MCTS 结合LLM的paper, 但是总体来说是一种拿来即用的模式,没有把MCTS 去进一步优化模型参数从而进一步提升模型推理,但是这篇文章用MCTS 去进一步fine-tune 大模型,从而会不断的迭代大模型。相当于传统用RLHF,或者DPO等fine-tune技巧,我觉得是种很大的创新:

我们可以首先来看看算法,然后我们解释下:

具体而言就是我们期初有一个dataset ,这个数据集里面有一些原始的questions and reponses, 然后我们有我们的初始的LLM 模型 , 然后我们还有一个reward model, 用来评判我们的 response的。其实仔细看算法,整体过程就是先从现有的数据集里面的prompts 里面通过一些方法生成合成数据,这种生成合成数据的方法可以是用另外一个模型,或者由人类知道self-instruct 配合大模型的方式去产生,主要是增加数据的diverse. 然后通过新的 prompts 我们通过蒙特卡洛树搜索配合reward model最终反馈的方法去搜索高质量的回答 ,我们之后去解释下具体MCTS 作者在这里是怎么做的,做了哪些改进,一旦搜集到了足够多的数据,我们得到了新的数据集,然后通过扩充的数据集或者新的数据集进行fine-tune去迭代我们的LLM .

其实整体而言就是通过MCTS 的方法进行高质量训练数据的生成,然后进一步fine-tune 大模型的过程。

那么我们该如何用MCTS 去生成新的高质量response呢?具体作者在MCTS算法的基础上做了哪些改动,应用到这个例子里面呢?

首先我们需要了解下MCTS四个基本的过程(如下):

基本就是四个步骤,selection, expansion, simulation和 backprogation, bacprogation的起始就是去update 节点的Q value, 依据如下的通用公式UCB:

大致看了下修改的方法:一个是option-level 搜索,传统的 MCTS 在语言任务中进行 token 级别的搜索会导致搜索空间过大,效率低下。因此,ALPHALLM 采用选项级别的 MCTS,将每个选项视为一个搜索节点。每个选项代表一系列的 token 序列,可以是多个 token 或者几个句子。还有就是Importance Weighted Expansion,这个过程我觉得就是一个pruning 的过程,直到搜索重要的节点,对于重要的节点的选择是通过学习一个价值函数V去判定的:

伪代码(GPT-4o 提供):

import numpy as np``   ``class MCTSNode:`    `def __init__(self, state):`        `self.state = state`        `self.children = {}`        `self.visit_count = 0`        `self.total_value = 0``   `    `def is_fully_expanded(self):`        `# 判断节点是否已完全展开`        `return len(self.children) == len(self.state.get_legal_actions())``   `    `def best_child(self, exploration_weight=1.0):`        `# 选择最佳子节点`        `best_score = -np.inf`        `best_child = None`        `for child in self.children.values():`            `score = (child.total_value / child.visit_count) + exploration_weight * np.sqrt(np.log(self.visit_count) / child.visit_count)`            `if score > best_score:`                `best_score = score`                `best_child = child`        `return best_child``   `    `def compute_importance(self, value_function):`        `# 计算节点的重要性`        `max_value_change = -np.inf`        `for action in self.state.get_legal_actions():`            `new_state = self.state.take_action(action)`            `value_change = abs(value_function(new_state) - value_function(self.state))`            `if value_change > max_value_change:`                `max_value_change = value_change`        `return max_value_change``   ``def mcts_search(root, num_simulations, value_function, rollout_policy, alpha=1.0, c_min=2, c_max=10):`    `for _ in range(num_simulations):`        `node = root`        `# Selection`        `while node.is_fully_expanded() and node.children:`            `node = node.best_child()`        `        # Expansion`        `if not node.is_fully_expanded():`            `importance = node.compute_importance(value_function)`            `n_children = int(min(max(alpha * importance, c_min), c_max))`            `for _ in range(n_children):`                `action = node.state.get_random_untried_action()`                `new_state = node.state.take_action(action)`                `new_node = MCTSNode(new_state)`                `node.children[action] = new_node`                `node = new_node`        `        # Simulation`        `reward = rollout(new_state, rollout_policy)`        `        # Backpropagation`        `while node is not None:`            `node.visit_count += 1`            `node.total_value += reward`            `node = node.parent``   ``def rollout(state, rollout_policy):`    `# 使用快速回滚策略模拟轨迹`    `while not state.is_terminal():`        `action = rollout_policy(state)`        `state = state.take_action(action)`    `return state.get_reward()``   ``class State:`    `def get_legal_actions(self):`        `# 返回当前状态下的合法操作`        `pass``   `    `def take_action(self, action):`        `# 执行操作并返回新的状态`        `pass``   `    `def get_random_untried_action(self):`        `# 返回一个未尝试过的随机操作`        `pass``   `    `def is_terminal(self):`        `# 判断状态是否为终止状态`        `pass``   `    `def get_reward(self):`        `# 返回当前状态的奖励`        `pass``   ``# 示例用法``initial_state = State()``root = MCTSNode(initial_state)``value_function = lambda state: 0  # 示例价值函数``rollout_policy = lambda state: state.get_random_untried_action()  # 示例回滚策略``mcts_search(root, num_simulations=100, value_function=value_function, rollout_policy=rollout_policy)``   

然后还有stage merging,这个过程其实也是减少搜索空间和提高搜索效率的一种技术,其实最主要的意思就是把相似的节点进行合并,避免重复搜索,也就是如果一个新的action 跟我们的pool里面已经搜索到的action 很接近,那么就不去搜索了,而是通过一个距离函数去measure 如果新的action跟我们 pool里面的action距离超过了一定的阈值再加到我们的child nodes pool里面进行进一步的的搜索,也就是避免去搜寻非常相似的action节点,增加搜到的diversity。

还有一个technique 就是Fast Rollout with Specialized LM, 这个其实就是用小模型去代替原来的大的LLM模型去快速进行roll-out路径搜索从而加快搜素速度!

可以看下实验结果:

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

  • 11
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值