RAG系统的四层天梯:大模型RAG系统的成长之路

第一章:为什么要给大模型喂"额外营养"?

想象一下,你有一个超级智能的AI助手,它几乎无所不知。但当你问它"今天的股市行情如何?“或者"最新的新冠病毒变种有哪些症状?”,它却一脸茫然。这就是大语言模型(LLM)的现状 - 知识广博但不够新鲜。

这就是为什么我们需要给LLM喂点"额外营养",也就是外部数据。这个过程,专业点说叫"检索增强生成"(RAG)。

首先,让我们聊聊为什么要这么做:

1.1 让AI变得更"专业"

LLM虽然懂得多,但在专业领域可能还不如一个刚毕业的学生。想象你在开发一个法律AI助手,如果它连最新的法律修订都不知道,那不就成了法庭上的笑话吗?

举个例子:假设有一个新的环保法规出台。传统LLM可能完全不知道,但使用RAG的系统可以迅速学习并应用这个新规定。这就是外部数据的威力 - 它能让AI快速成为各行各业的"专家"。

1.2 保持AI的"时尚度"

AI世界发展太快了,昨天的新闻今天就成了旧闻。如果你的AI还在谈论2020年的事情,那就真的out了。

比如,如果你问AI:“最新的AI突破是什么?”,传统LLM可能还在谈GPT-3,而使用RAG的系统已经能讨论GPT-4、DALL-E 3等最新进展。

1.3 减少AI的"幻想症"

LLM有时候会自信满满地胡说八道,这在AI圈叫"幻觉"。给它喂点靠谱的外部数据,就能大大减少这种情况。

假如你在做医疗诊断,AI胡乱猜测症状可是会出人命的。使用RAG,AI可以基于最新的医学研究来给出建议,大大提高了可靠性。

听起来很美好,对吧?但是,实现起来可没那么容易。这就像是给大象装上显微镜 - 既要保持大象的力量,又要发挥显微镜的精准。

首先,你得准备海量的高质量数据。我们说的不是几个 word,而是至少覆盖业务场景的数据量。数据从哪来?爬虫、购买、合作获取,方法多得是。但要小心,爬虫爬着爬着,搞不好律师函就来了。所以,找专业的数据团队来处理这事儿准没错。

然后,你得建立一个超级高效的检索系统。这就像是给AI配了个24小时不睡觉的图书管理员,随时准备找出最相关的信息。

最后,还得想办法让AI"理解"这些新信息。这可不是简单的复制粘贴,而是要让AI真正吸收这些知识,并在回答问题时能灵活运用。

听起来很难?确实如此。在各个专业领域部署这样的系统,面临的挑战可不少:

  1. 数据质量控制:垃圾进,垃圾出。如果喂给AI的数据质量不好,那结果可能比不用外部数据还糟糕。

  2. 实时性vs.计算成本:理想情况下,我们希望AI能实时获取最新信息。但这意味着巨大的计算成本。如何在实时性和成本之间取得平衡,是个大问题。

  3. 领域适应性:医疗、法律、金融,每个领域都有其特殊性。如何让一个通用的RAG系统适应不同领域的需求,这可是个技术活。

  4. 隐私和安全:尤其在处理敏感信息时(比如医疗记录),如何在利用数据的同时保护隐私,这是个棘手的问题。

给LLM喂"额外营养"的潜力是巨大的,但挑战也不小。谁能解决这些问题,谁就可能成为下一个AI领域的巨头。

第二章:RAG不是一刀切 - 四个层次的查询分类

在上面,我们了解了为什么要给大模型喂"额外营养"。但是,就像人类的饮食需要根据不同情况调整一样,RAG系统也需要根据不同类型的查询来调整其策略。

假如你正在开发一个全能型AI助手。有时候用户可能会问"2023年诺贝尔文学奖得主是谁?“,有时候可能会问"为什么量子计算机比传统计算机快?”。这两种问题显然需要不同的处理方式,对吧。

基于这种思考,论文将用户查询分为四个层次。让我们逐一深入探讨:

2.1 显式事实查询

这是最直接的查询类型。用户问的是明确的、可以直接在数据中找到答案的问题。

例如:“东京奥运会是哪一年举办的?”

对于这类查询,RAG系统的任务相对简单:

  • 首先,系统需要准确理解查询的关键词(如"东京奥运会"和"举办年份")

  • 然后,在外部数据源中直接检索这些信息

  • 最后,将找到的信息组织成自然语言回答

实现这类查询的关键在于高效的信息检索系统。你可能需要使用倒排索引、向量检索等技术来加速查找过程。

2.2 隐式事实查询

这类查询虽然也是关于事实的,但答案并不能直接在单一数据点中找到,需要综合多个信息。

例如:“哪个国家在过去十年的奥运会上获得的金牌总数最多?”

处理这类查询的挑战在于:

  • 系统需要理解查询的时间范围(“过去十年”)

  • 需要检索多个奥运会的数据

  • 对检索到的数据进行汇总和比较

这就需要RAG系统具备一定的数据处理和简单推理能力。你可能需要实现一些轻量级的数据分析功能,如聚合、排序等。

2.3 可解释推理查询

这类查询不仅需要事实,还需要解释或推理。答案通常需要基于某些明确的规则或指南。

例如:“根据现行法律,一个18岁的人可以在美国哪些州合法购买酒精饮料?”

处理这类查询的难点在于:

  • 系统需要检索相关的法律法规

  • 理解法律条文的含义

  • 将法律条文应用到具体情况(18岁)

  • 生成一个既准确又易懂的解释

这种查询可能需要你实现一些规则引擎或决策树,以模拟人类的推理过程。

2.4 隐藏推理查询

这是最复杂的查询类型。答案不仅需要大量的背景知识,还需要复杂的推理过程,而这些推理过程可能并不明确。

例如:“考虑到全球气候变化,未来20年内北极熊的生存前景如何?”

处理这类查询的挑战在于:

  • 需要整合来自多个领域的知识(气候科学、生态学、北极熊生物学等)

  • 需要进行复杂的因果推理

  • 可能需要考虑多种可能的情景

实现这类查询的RAG系统可能需要结合多种AI技术,如因果推理模型、情景模拟等。你可能还需要实现一种"思维链"(Chain of Thought)机制,让AI能够逐步推理并解释其推理过程。

总结一下,这四个层次的查询分类方法让我们能够更有针对性地设计和优化RAG系统。从简单的事实检索到复杂的推理任务,每一层都有其独特的挑战和解决方案。

在实际应用中,一个成熟的RAG系统往往需要能够处理所有这四个层次的查询。这就像是在训练一个全能运动员 - 既要能短跑,又要能马拉松,还得会游泳和举重。听起来很难?确实如此。但是,正是这种挑战让AI研究如此激动人心。

第三章:深入RAG的四个层次 - 从定义到解决方案

我们概述了RAG任务的四个层次。现在,让我们卷起袖子,深入每个层次的技术细节。准备好你的工程师思维,我们要开始真正的技术探索了!

3.1 显式事实查询

定义和特征:这是最基础的查询类型,答案直接存在于外部数据中。特征是查询和答案之间存在直接的文本匹配关系。

例如:Query: “谁发明了电话?” Answer: “亚历山大·格雷厄姆·贝尔发明了电话。”

相关数据集:

  • Natural Questions (NQ)

  • SQuAD (Stanford Question Answering Dataset)

  • TriviaQA

这些数据集包含大量的问答对,非常适合训练和评估处理显式事实查询的模型。

关键挑战:

  1. 高效检索:在海量数据中快速定位相关信息。

  2. 准确匹配:精确识别查询和答案之间的对应关系。

  3. 答案抽取:从检索到的文本中准确提取所需信息。

最有效的解决技术:

  1. 稠密检索:使用BERT等模型将查询和文档编码为稠密向量,进行相似度匹配。

  2. BM25等经典检索算法:基于词频和文档频率进行相关性排序。

  3. 跨度预测:使用机器学习模型在检索到的文档中预测答案的起始和结束位置。

代码示例(使用Haystack框架):

from haystack import Pipeline   from haystack.nodes import BM25Retriever, FARMReader      retriever = BM25Retriever(document_store)   reader = FARMReader("deepset/roberta-base-squad2")      pipe = Pipeline()   pipe.add_node(component=retriever, name="Retriever", inputs=["Query"])   pipe.add_node(component=reader, name="Reader", inputs=["Retriever"])      result = pipe.run(query="谁发明了电话?")   print(result['answers'][0].answer)   

3.2 隐式事实查询

定义和特征:这类查询的答案需要综合多个信息源。特征是需要进行简单的推理或计算。

例如:Query: “哪个国家在2020年奥运会上获得的金牌最多?”
Answer: 需要检索多个国家的金牌数据,并进行比较。

相关数据集:

  • HotpotQA

  • ComplexWebQuestions

  • IIRC (Incomplete Information Reading Comprehension)

这些数据集包含需要多跳推理的问题,很适合训练处理隐式事实查询的模型。

关键挑战:

  1. 多跳推理:需要从多个文档中收集信息并进行整合。

  2. 信息聚合:如何有效地组合来自不同源的信息。

  3. 中间结果管理:在多步推理过程中如何管理和利用中间结果。

最有效的解决技术:

  1. 图神经网络:构建文档之间的关系图,进行多跳推理。

  2. 迭代检索:基于初始检索结果进行多轮检索,逐步收集所需信息。

  3. 查询分解:将复杂查询分解为多个简单查询,分步骤解决。

代码示例(使用DeepsetAI的Haystack框架):

from haystack import Pipeline   from haystack.nodes import BM25Retriever, FARMReader, JoinDocuments      retriever = BM25Retriever(document_store)   reader = FARMReader("deepset/roberta-base-squad2")   joiner = JoinDocuments(join_mode="concatenate")      pipe = Pipeline()   pipe.add_node(component=retriever, name="Retriever", inputs=["Query"])   pipe.add_node(component=joiner, name="Joiner", inputs=["Retriever"])   pipe.add_node(component=reader, name="Reader", inputs=["Joiner"])      result = pipe.run(query="哪个国家在2020年奥运会上获得的金牌最多?")   print(result['answers'][0].answer)   

3.3 可解释推理查询

定义和特征:这类查询需要基于特定规则或指南进行推理。特征是需要应用领域知识和逻辑推理。

例如:Query: “根据现行法律,一个年收入5万美元的单身人士在加利福尼亚州需要缴纳多少所得税?”
Answer: 需要检索税法,理解税率表,并进行相应计算。

相关数据集:

  • LogicalQA

  • ReClor

  • ProofWriter

这些数据集包含需要逻辑推理的问题,适合训练处理可解释推理查询的模型。

关键挑战:

  1. 规则表示:如何在系统中表示和存储复杂的规则和指南。

  2. 规则应用:如何正确地将规则应用到具体情况。

  3. 解释生成:如何生成清晰、可理解的推理过程解释。

最有效的解决技术:

  1. 符号推理:使用逻辑编程语言(如Prolog)表示和应用规则。

  2. 神经符号结合:将神经网络与符号推理系统结合。

  3. Chain-of-Thought提示:使用特殊的提示技术引导语言模型进行步骤化推理。

代码示例(使用GPT-3进行Chain-of-Thought推理):

import openai      openai.api_key = "your-api-key"      prompt = """   Query: 根据现行法律,一个年收入5万美元的单身人士在加利福尼亚州需要缴纳多少所得税?      Let's approach this step-by-step:      1) First, we need to know the California state income tax brackets for single filers.   2) Then, we'll calculate the tax for each bracket up to $50,000.   3) Finally, we'll sum up the tax amounts.      Step 1: California tax brackets for single filers (2021):   - 1% on the first $8,932 of taxable income   - 2% on taxable income between $8,933 and $21,175   - 4% on taxable income between $21,176 and $33,421   - 6% on taxable income between $33,422 and $46,394   - 8% on taxable income between $46,395 and $50,000      Step 2: Calculate tax for each bracket:   - 1% of $8,932 = $89.32   - 2% of ($21,175 - $8,933) = $244.84   - 4% of ($33,421 - $21,176) = $489.80   - 6% of ($46,394 - $33,422) = $778.32   - 8% of ($50,000 - $46,395) = $288.40      Step 3: Sum up the tax amounts:   $89.32 + $244.84 + $489.80 + $778.32 + $288.40 = $1,890.68      Therefore, a single person with an annual income of $50,000 in California would owe approximately $1,890.68 in state income tax.      Note: This is a simplified calculation and doesn't account for deductions, credits, or other factors that might affect the actual tax liability.   """      response = openai.Completion.create(     engine="gpt4",     prompt=prompt,     max_tokens=500   )      print(response.choices[0].text.strip())   
  1. 隐藏推理查询

定义和特征:这是最复杂的查询类型,需要大量背景知识和复杂的推理过程。特征是推理过程往往不是明确的,需要模型自行发现和应用隐含的知识和关系。

例如:Query: “考虑到全球气候变化和人类活动,预测未来50年内亚马逊雨林的变化。”
Answer: 需要综合气候科学、生态学、社会学等多个领域的知识,进行复杂的因果推理和预测。

相关数据集:

  • ARC-Challenge

  • OpenBookQA

  • QASC (Question Answering via Sentence Composition)

这些数据集包含需要广泛知识和复杂推理的问题,适合训练处理隐藏推理查询的模型。

关键挑战:

  1. 知识整合:如何有效整合来自不同领域的大量知识。

  2. 隐含关系发现:如何发现数据中的隐含关系和模式。

  3. 不确定性处理:如何处理推理过程中的不确定性和多种可能性。

最有效的解决技术:

  1. 大规模预训练语言模型:如GPT-3, PaLM等,它们包含大量隐含知识。

  2. 知识图谱:构建和利用大规模知识图谱进行复杂推理。

  3. 多任务学习:同时学习多个相关任务,提高模型的泛化能力。

  4. 元学习:让模型学会如何学习,以适应新的、复杂的推理任务。

代码示例(使用Hugging Face的Transformers库和GPT-4):

from transformers import pipeline   import openai      # 使用BART进行初步总结   summarizer = pipeline("summarization", model="facebook/bart-large-cnn")      # 假设我们有多个相关文档   documents = [       "气候变化正在加速亚马逊雨林的退化...",       "人类活动,如砍伐和农业扩张,正在威胁亚马逊雨林...",       "一些研究表明,亚马逊雨林可能会在未来几十年内达到临界点..."   ]      # 总结每个文档   summaries = [summarizer(doc, max_length=50, min_length=10, do_sample=False)[0]['summary_text'] for doc in documents]      # 使用GPT-3进行最终的综合分析   openai.api_key = "your-api-key"      prompt = f"""   Based on the following summaries about the Amazon rainforest:      {' '.join(summaries)}      Predict the changes in the Amazon rainforest over the next 50 years, considering global climate change and human activities. Provide a detailed analysis.   """      response = openai.Completion.create(     engine="gpt4",     prompt=prompt,     max_tokens=500   )      print(response.choices[0].text.strip())   

以上的例子展示了如何结合使用预训练模型进行文本总结,然后使用更强大的语言模型(如GPT-4)进行复杂的推理和预测。
通过深入了解这四个层次的查询,我们可以看到RAG系统面临的挑战是多方面的,从简单的信息检索到复杂的知识整合和推理。每一个层次都需要特定的技术和方法来解决其独特的挑战。

在实际应用中,一个成熟的RAG系统往往需要能够处理所有这四个层次的查询。这就要求我们不断创新和改进现有的技术,同时也为AI研究开辟了广阔的前景。

第四章:数据与LLM的三种"联姻"方式

在前面的内容中,我们讨论了RAG系统如何处理不同层次的查询。现在,让我们转向一个更加根本的问题:假如获取到数据后,如何将外部数据与LLM结合起来?论文提出了三种主要的方法,每种方法都有其独特的优势和挑战。让我们逐一深入探讨。

4.1 上下文方法(Context)

这种方法就像是给LLM一个即时的"记忆补丁"。每次询问LLM时,我们都会同时提供相关的上下文信息。

工作原理:

  1. 接收用户查询

  2. 从外部数据源检索相关信息

  3. 将检索到的信息与用户查询一起作为输入提供给LLM

  4. LLM基于这个增强的输入生成回答

优势:

  • 灵活性高:可以根据每个查询动态选择相关信息

  • 无需重新训练模型:可以直接使用预训练的LLM

  • 可解释性强:我们知道模型使用了哪些额外信息

挑战:

  • 上下文长度限制:LLM通常有输入长度限制,限制了可以提供的上下文量

  • 检索质量依赖:回答质量高度依赖于检索系统的性能

  • 计算成本:每次查询都需要进行检索,可能增加延迟

实现示例:

from transformers import AutoTokenizer, AutoModelForCausalLM   import torch      tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-72B-Instruct")   model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-72B-Instruct")      def get_context(query):       # 这里应该是你的检索逻辑       return "相关上下文信息..."      query = "什么是量子计算?"   context = get_context(query)      input_text = f"上下文:{context}\n问题:{query}\n回答:"   input_ids = tokenizer.encode(input_text, return_tensors="pt")      output = model.generate(input_ids, max_length=200, num_return_sequences=1, no_repeat_ngram_size=2)   response = tokenizer.decode(output[0], skip_special_tokens=True)      print(response)   

4.2 小模型方法(Small model)

这种方法就像是给LLM配备了一个专业的"助手"。我们训练一个小型模型来处理特定任务,如信息检索或知识整合,然后将这个小模型的输出提供给LLM。

工作原理:

  1. 训练一个专门的小模型(如检索器或知识整合器)

  2. 接收用户查询

  3. 小模型处理查询,生成相关信息或知识表示

  4. 将小模型的输出与用户查询一起提供给LLM

  5. LLM生成最终回答

优势:

  • 效率:小模型可以更快速地处理大量数据

  • 专业性:可以为特定任务定制小模型

  • 模块化:可以轻松更新或替换小模型,而不影响主要的LLM

挑战:

  • 训练复杂性:需要额外的训练过程和数据

  • 集成难度:需要设计有效的方法将小模型的输出与LLM结合

  • 性能瓶颈:如果小模型性能不佳,可能会限制整个系统的表现

实现示例:

from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM   import torch      # 假设这是我们的小模型,用于生成查询的向量表示   retriever_tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")   retriever_model = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")      # 主要的LLM   lm_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-72B-Instruct")   lm_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-72B-Instruct")      def get_query_embedding(query):       inputs = retriever_tokenizer(query, return_tensors="pt", padding=True, truncation=True)       with torch.no_grad():           outputs = retriever_model(**inputs)       return outputs.last_hidden_state.mean(dim=1)      query = "什么是量子计算?"   query_embedding = get_query_embedding(query)      # 在实际应用中,我们会用这个嵌入来检索相关文档   # 这里我们简单地假设我们得到了一些相关信息   retrieved_info = "量子计算是利用量子力学现象进行计算的技术..."      input_text = f"基于以下信息:{retrieved_info}\n回答问题:{query}"   input_ids = lm_tokenizer.encode(input_text, return_tensors="pt")      output = lm_model.generate(input_ids, max_length=200, num_return_sequences=1, no_repeat_ngram_size=2)   response = lm_tokenizer.decode(output[0], skip_special_tokens=True)      print(response)   

4.3 微调方法(Fine-tuning)

这种方法就像是给LLM进行"专业培训"。我们使用特定领域的数据对预训练的LLM进行进一步的训练,使其能够更好地处理特定类型的任务或领域知识。

工作原理:

  1. 准备特定领域或任务的数据集

  2. 使用这些数据对预训练的LLM进行进一步训练

  3. 在推理时,直接使用微调后的模型处理用户查询

优势:

  • 性能:在特定领域或任务上可以获得最佳性能

  • 效率:推理时不需要额外的检索步骤

  • 知识整合:可以将大量领域知识直接整合到模型中

挑战:

  • 计算成本:微调大型模型需要大量计算资源

  • 数据需求:需要大量高质量的领域特定数据

  • 灵活性降低:微调后的模型可能在其他领域表现下降

实现示例:

from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer   import torch   from datasets import load_dataset      # 加载预训练模型   model_name = "gpt2"   tokenizer = AutoTokenizer.from_pretrained(model_name)   model = AutoModelForCausalLM.from_pretrained(model_name)      # 准备数据集(这里使用虚构的数据集名称)   dataset = load_dataset("quantum_physics_dataset")      def tokenize_function(examples):       return tokenizer(examples["text"], padding="max_length", truncation=True)      tokenized_datasets = dataset.map(tokenize_function, batched=True)      # 设置训练参数   training_args = TrainingArguments(       output_dir="./results",       num_train_epochs=3,       per_device_train_batch_size=8,       per_device_eval_batch_size=8,       warmup_steps=500,       weight_decay=0.01,       logging_dir="./logs",   )      # 创建Trainer   trainer = Trainer(       model=model,       args=training_args,       train_dataset=tokenized_datasets["train"],       eval_dataset=tokenized_datasets["test"],   )      # 开始微调   trainer.train()      # 使用微调后的模型   query = "什么是量子纠缠?"   input_ids = tokenizer.encode(query, return_tensors="pt")   output = model.generate(input_ids, max_length=200, num_return_sequences=1, no_repeat_ngram_size=2)   response = tokenizer.decode(output[0], skip_special_tokens=True)      print(response)   

每种方法都有其适用的场景:

  • 上下文方法适合需要高度灵活性,或者经常需要处理新信息的场景。

  • 小模型方法适合需要专门处理某些复杂任务(如高级检索或知识推理)的场景。

  • 微调方法适合在特定领域需要深度专业知识,且有大量相关数据可用的场景。

在实际应用中,这三种方法往往是结合使用的。例如,我们可能会先对LLM进行领域微调,然后在使用时还配合上下文方法提供最新信息。或者,我们可能会使用经过微调的小模型来进行检索,然后将检索结果作为上下文提供给主要的LLM。

选择哪种方法,或如何组合这些方法,取决于具体的应用需求、可用资源、以及对模型性能、效率和灵活性的权衡。

第五章:RAG的艺术 - 从理论到实践的整合之道

我们将把前面所学的所有概念串联起来,看看如何在实际中运用这些知识。系好安全带,我们开始这段激动人心的旅程吧!

5.1 三种整合方式的利弊权衡

还记得我们讨论过的三种将外部数据整合到LLM中的方式吗?让我们再深入探讨一下它们各自的优缺点和适用场景。

  1. 上下文方法(Context)

优势:

- 灵活性拉满:想换数据就换,LLM完全不用动  
- 透明度高:我们清楚地知道模型用了哪些额外信息  

局限性:

- 上下文长度有限:就像塞鸭子,塞太多LLM也消化不了  
- 检索质量决定生死:垃圾进垃圾出,检索不好全盘皆输  

适用场景:

- 需要频繁更新知识库的应用  
- 对结果可解释性要求高的场景  

  1. 小模型方法(Small model)

优势:

- 专业性强:可以为特定任务定制"小助手"  
- 模块化设计:想换就换,主LLM不受影响  

局限性:

- 训练成本高:又要准备数据又要训练,累死个人  
- 集成难度大:让"小助手"和LLM无缝配合不是易事  

适用场景:

- 有特定复杂任务需要处理的应用  
- 计算资源有限,无法频繁调用大型LLM的情况  

  1. 微调方法(Fine-tuning)

优势:

- 性能王者:在特定领域可以达到最佳表现  
- 推理效率高:不需要额外的检索步骤  

局限性:

- 计算成本高:微调大模型,没个几千块GPU别想了  
- 灵活性降低:一旦微调,可能会影响其他领域的表现  

适用场景:

- 特定领域的专业应用  
- 有大量高质量领域数据可用的情况  

5.2 四个查询层次的技术方案

现在,让我们看看如何针对不同复杂度的查询选择合适的技术方案。

  1. 显式事实查询:基础RAG就够了这就像是在图书馆找一本特定的书。我们用基础的RAG就能搞定,主要是要把检索做好。代码示例:
from haystack import Pipeline   from haystack.nodes import BM25Retriever, FARMReader      retriever = BM25Retriever(document_store)   reader = FARMReader("deepset/roberta-base-squad2")      pipe = Pipeline()   pipe.add_node(component=retriever, name="Retriever", inputs=["Query"])   pipe.add_node(component=reader, name="Reader", inputs=["Retriever"])      result = pipe.run(query="谁发明了电话?")   print(result['answers'][0].answer)   
  1. 隐式事实查询:迭代RAG、图/树RAG、RAG+SQL这就像是要写一篇研究报告,需要查阅多本书籍并整合信息。

代码示例(迭代RAG):

def iterative_rag(query, max_iterations=3):       context = ""       for i in range(max_iterations):           result = pipe.run(query=query + " " + context)           new_info = result['answers'][0].answer           context += new_info           if "完整回答" in new_info:               break       return context      final_answer = iterative_rag("比较太阳系中最大和最小的行星")   print(final_answer)   
- 迭代RAG:多轮检索,每轮基于之前的结果继续深入  
-/树RAG:构建知识图谱,进行多跳推理  
- RAG+SQL:结合结构化数据查询,处理复杂的数值计算  

  1. 可解释推理查询:提示调优、思维链提示这就像是要解决一道复杂的数学题,需要一步步推导。

代码示例(思维链提示):

prompt = """   问题:一个水箱可以在6小时内装满水。现在已经装了2小时,还剩下3/4没装满。请问这个水箱实际上需要多长时间才能装满?      让我们一步步思考:   1) 首先,我们知道正常情况下,水箱需要6小时装满。   2) 现在已经装了2小时,还剩3/4没装满。   3) 这意味着2小时内只装满了1/4的水箱。   4) 如果2小时装满1/4,那么装满整个水箱需要的时间是:      2小时 * 4 = 8小时      因此,这个水箱实际上需要8小时才能装满。      是否需要我进一步解释这个推理过程?   """      response = openai.Completion.create(engine="gpt4", prompt=prompt, max_tokens=150)   print(response.choices[0].text.strip())   
- 提示调优:设计特定的提示模板,引导LLM进行推理  
- 思维链提示:让LLM像人类一样,一步步写出推理过程  

  1. 隐藏推理查询:离线学习、上下文学习、微调这就像是要预测未来的股市走势,需要整合大量信息并进行复杂的推理。

代码示例(微调):

from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer      model_name = "gpt2"   tokenizer = AutoTokenizer.from_pretrained(model_name)   model = AutoModelForCausalLM.from_pretrained(model_name)      # 准备特定领域的数据集   train_dataset = ...  # 你的训练数据   eval_dataset = ...   # 你的评估数据      training_args = TrainingArguments(output_dir="./results", num_train_epochs=3, per_device_train_batch_size=8)      trainer = Trainer(model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset)   trainer.train()      # 使用微调后的模型   query = "预测未来5年的全球经济趋势"   input_ids = tokenizer.encode(query, return_tensors="pt")   output = model.generate(input_ids, max_length=200)   print(tokenizer.decode(output[0], skip_special_tokens=True))   
- 离线学习:预先学习领域知识,构建专门的知识库  
- 上下文学习:动态选择最相关的上下文进行学习  
- 微调:在特定领域数据上微调LLM  

5.3 知己知彼,百战不殆

在开发RAG应用之前,我们需要做的第一件事是什么?没错,就是深入理解我们要解决的问题。这就像是要打仗前先要了解敌情一样重要。

  1. 理解目标任务:我们到底要解决什么问题?是简单的信息检索还是复杂的推理任务?

  2. 确定查询复杂度:我们的用户会问什么类型的问题?是简单的事实查询还是需要深度推理的问题?

  3. 评估数据情况:我们有什么样的数据可用?数据的质量如何?是否需要预处理?

  4. 考虑资源限制:我们有多少计算资源?对响应速度有什么要求?

只有充分理解了这些因素,我们才能选择最适合的技术方案。记住,没有一种方法是万能的,关键是找到最适合你特定需求的方法。

5.4 大杂烩才是真正的美味

在实际应用中,我们经常会遇到各种类型的查询混杂在一起的情况。这就像是要做一道大杂烩,需要各种食材和调料的完美配合。

我们需要设计一个智能的路由系统,能够识别不同类型的查询,并将其导向最合适的处理模块。这个系统可能看起来像这样:

def query_router(query):       if is_simple_fact_query(query):           return basic_rag(query)       elif is_implicit_fact_query(query):           return iterative_rag(query)       elif is_interpretable_reasoning_query(query):           return chain_of_thought_prompting(query)       elif is_hidden_reasoning_query(query):           return fine_tuned_model(query)       else:           return fallback_method(query)      def process_query(query):       response = query_router(query)       return post_process(response)      # 使用示例   user_query = "请解释量子纠缠的原理及其在量子计算中的应用"   answer = process_query(user_query)   print(answer)   

这个路由系统就像是一个经验丰富的总厨,知道每种原料应该如何处理,最终做出一道美味的大餐。

结语

构建一个优秀的RAG系统,就像是在进行一场复杂的厨艺比赛。你需要了解每种原料(数据)的特性,掌握各种烹饪技巧(技术方法),并且要有足够的创意来应对各种挑战。

记住,理论和实践同样重要。多尝试,多总结,你就会发现RAG的魅力所在。谁知道呢,或许也许下一个改变AI世界的突破,就来自于你的灵感。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值