大模型缺少在最少的人类监督下自主行动的能力,以及在复杂环境中适应和执行目标的能力,基于大模型的AI Agent利用大模型理解、思考输出的“专家能力”,并附加规划、记忆、执行、工具调用能力,可以替代大量人工执行,消除大模型和真实世界沟通的障碍,解决大模型落地的“最后一公里”。
当前,AI Agent已经成为企业落地大模型时的必要路径之一。
按照智能体数量划分,AI Agent可以分为Single-agent和Multi-agent。Single-agent(单个智能体)较为常见,Multi-agent(多智能体)是在Single-agent的基础上,通过多个Agent之间的交互去解决更加复杂的问题。
根据沙丘智库发布的《[2024中国AI Agent市场指南]》,Multi-agent系统(MAS)由多个彼此独立但可互相交互的的Agent组成,每个Agent都能感知环境并采取行动。多个Agent朝着一个共同的目标努力,这个目标通常超出了单个Agent的能力范围。
多个Agent的联合应用可以解决单个Agent无法完成的复杂任务,同时创造出适应性更强、扩展性更高和更稳健的解决方案。但Multi-agent系统通常比单个Single-agent系统更难设计。这些系统可能会表现出难以提前预测的突发行为,需要更强大的训练和测试,以及持续的监控、追溯和文档记录。例如,Agent之间相互冲突的目标和互动可能会产生不良行为。
当前,大模型以及AI Agent技术仍处于快速发展阶段,在企业应用过程中,是Single-agent系统还是Multi-agent系统更为有效,没有确定答案,需要结合场景特点、技术能力等多方面的因素考虑。
Single-agent的潜力不可忽视,Multi-agent的价值同样值得期待。Single-agent系统在处理那些定义清晰、无需其他智能体角色或用户反馈的任务时表现较为出色,Multi-agent系统则在需要多方协作和能够采取多条执行路径的情况下,展现出其独特的优势。
沙丘智库长期跟踪调研大模型技术的发展,旨在帮助企业快速了解大模型最新、最全面的落地情况。在Multi-agent系统的落地实践方面,当前已有企业在客服、销售、运维等任务参与方较多、场景较为复杂、需要灵活调整的场景进行了探索。沙丘智库通过研究联想、百度、华为、蚂蚁等头部企业的Multi-agent落地实践,旨在为其他企业提供参考。
▎案例1:联想基于Multi-agent的销售提效实践
联想通过建立一个multi-agent系统来简化销售场景的产品配置建议流程,旨在生成精准的、定制化的产品配置建议。multi-agent系统的工作流程如下:
· 系统内的每个Agent都由一个大语言模型支持执行特定任务,如检查库存可用性、优先考虑高毛利产品以及根据营销策略推广产品;
· 根据用户输入的prompt,每个Agent从知识库中获取特定信息,并触发工具包中的相关应用来执行任务。工具包是一个API集合,这些API可以在配置过程中触发应用,不同的Agent会根据不同的任务需求选择不同的API来完成任务。
▎案例2:百度客服AI Agent实践
基于Agent的对话系统需要做到在任务发起时理解任务并进行合理规划、在任务执行时根据任务状态进行灵活切换。
百度基于Agent的对话系统包括一个主Agent和多个子Agent,Master Agent作为规划器,三个子Agent(RAG Agent、信息收集Agent、观察Agent)完成知识答疑、信息收集等子任务。
▎案例3:华为基于LLM和Multi-agent的智能运维探索
华为探索基于大语言模型(LLM)和多智能体(Multi-agent)的智能运维方案,该方案利用大模型的知识储备与运维专业知识的结合,以及多智能体的协同工作,显著提高了故障分析、异常检测和根因定位的效率。
以故障诊断为例,系统检测到节点异常后,主管Agent收到信息后下发具体任务流,请检测Agent执行详细检测、请根因定位Agent根据详细检测结果查找根因、请故障分析Agent给出故障分析报告,然后检测Agent进行检测,将指标异常、异常程度、异常开始时间等信息输入给根因定位Agent,根因定位Agent执行根因定位分析,找到根因。然后将检测出来的信息和根因输入给故障分类Agent,利用大模型进行故障分类,然后启动故障分析Agent,输出可执行代码和总结。
▎案例4:蚂蚁金融场景的大模型多智能体实践
金融领域因其信息、知识和决策的密集性,要求智能体解决方案具备严谨性和专业性。蚂蚁集团AgentUniverse框架是一个支持多智能体协作的开源项目,投研支小助是AgentUniverse框架的典型应用之一。
投研支小助中间是计划、执行、表达、评价的闭环,且闭环可以嵌套,例如在计划环节引入一层PEER通过分工得到更好的拆解,或者在评价环节再引入PEER的分工来做细粒度的精细评价,让子闭环内的多个Agent决定复杂任务如何进行更合理的拆解。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。