AI赋能传统医疗信息化应用场景分析

01.背景介绍

人工智能技术(AI)已经渗透到生活的方方面面,医疗信息化行业当然也不例外,各种AI应用也越来越多。

总体而言,目前传统医疗信息化(HIS系统、电子病历、LIS、PACS、互联网医院、HRP等)AI应用并不多,即使有也只是局部性的。随着AI技术的发展速度,相信在不久的将来,会出现真正的“AI+智慧医院”。

02.传统医疗信息化的现状分析

当前的医疗信息化建设,主要参照国家“智慧医院”建设标准,包括智慧医疗、智慧管理和智慧服务3部分。

虽然不同的医院,智慧化程度程度不同(目前主要以电子病历评级规范、互联互通、智慧管理评级规范和智慧服务评级规范,来衡量每家医院的智慧化程度。按照相关统计,目前同时通过国家电子病历五级、互联互通四级甲等、智慧服务三级及以上的医院共有71家)。

但如果我们把医院信息化建设的智慧程度简单的按照信息化、数字化、智能化来进行区分的话(其中信息化是指,通过信息化技术和系统,实现业务系统信息化管理;数字化是通过技术实现更高层级的应用,实现工作流程、业务模式以及组织结构的改造,实现数字化变革;智能化是指,在信息化数字化的基础上,运用更为先进的技术,如人工智能、机器学习、大数据分析等来分析和处理数据,以实现自动化决策和预测等)。

目前整体可能还处在数字化阶段,更多还是业务和流程的信息化,智能化还算不上,因为目前的自动化智能化还是不够的。

03.人工智能在哪些场景可以率先应用‍‍‍‍‍‍

新技术的真正落地应用,我的理解需要满足三方面的要求:需求较迫切、技术可实现、费用可承受。

说白了,有需求、能实现、用得起,只有同时满足这三方的需求,技术才能真正落地。

基于这几方面,结合目前市场实际的一些AI+医疗应用进展,个人认为在以下几个方面,AI应用可能会很快得到普及和推广。

具体如下图所示:

一、在患者智慧服务上,可以利用AI技术,实现主动化、智能化、个性化的服务。‍‍‍‍‍‍‍

二、在患者健康管理上,AI也可以做比较多的事情,比如健康宣教,用药指导,报告解读,个性化的健康管理方案等等。‍‍‍‍

三、临床诊断和治疗,包括各种辅助诊断,如影像、病理、超声等当然,也包括临床辅助决策,治疗方案与建议等。‍‍‍

四、智能医生助手,解放医生的工作,提高效率,提高医疗质量。‍

当然还会有其他应用场景,以上几个方面我想很快就会普及。

04.具体应用场景描述

1.AI赋能智慧服务场景

(1)AI智能客服

  • 功能:可以理解为导医台的线上化服务,通过AI技术,提供智能化的线上服务,包括就医问题咨询、应用服务推荐、智能分导诊、以及其他常见问题的解答等。

  • 优势:提供拟人化的服务,并且可以为患者提供全天候服务;能够处理大量常见的问题,减轻医护人员的工作负担;通过不断地学习与优化,智能客服的回答会越来越准确与人性化。

(2)智能分导诊

  • 功能:根据患者的症状与就医需求,智能分导诊系统能够自动匹配相应的科室和医生。

  • 优势:减少患者的等待时间,提高就诊效率;通过智能匹配,确保患者可以“找到”最匹配的医生,获得精准的就医服务。

(3)智能预问诊

  • 功能:通过问卷或语音交互,智能预问诊系统能够提前收集患者的症状信息,自动生成满足要求的规范化电子病历。

  • 优势:为医生提供初步的诊断参考,提高就诊效率;帮助患者更好地了解自己的健康状况,为就诊做好准备;减轻医护人员的工作压力,把更多时间专注于患者的治疗。

(4)AI数字陪诊

  • 功能:为患者提供虚拟陪诊服务,模拟医生或护士的陪伴,解答患者就诊过程中的各种疑问。

  • 优势:提供情感支持,减轻患者的焦虑和不安;通过智能问答,为患者提供个性化的健康建议和指导;降低医疗机构的人力成本,提高服务质量。

2.AI赋能健康管理场景

(1)AI健康咨询

  • 功能:为患者提供个性化的健康咨询服务,回答各种健康相关问题,并给出建议,包括饮食、运动、睡眠等方面的指导。

  • 优势:基于患者的个人健康状况与需求,提供定制化的健康建议;通过智能分析,为患者提供科学的健康指导;提高患者的健康素养和自我管理能力。

(2)AI报告解读

  • 功能:对体检报告或医疗检查报告进行自动解读,为患者提供易于理解的健康信息。

  • 优势:帮助患者清楚地了解自己的健康状况,减少医生的工作负担,让他们有更多时间专注于患者治疗;通过智能分析,为患者提供进一步的健康建议。

(3)AI用药指导

  • 功能:根据患者用药信息,提供用药说明和指导等。

  • 优势:确保患者用药安全和有效;避免药物滥用和误用;提高患者的治疗效果和生活质量。

(4)AI健康宣教

  • 功能:根据患者相关情况,自动化生成与推送个性化的健康宣教内容(图文、视频等),向患者提供健康知识、疾病预防等方面的教育。

  • 优势:提高患者的健康素养和疾病预防意识;降低医疗机构的医疗成本;通过智能分析,为患者提供个性化的健康宣教内容。

(5)AI健康管理

功能:包括健康。

优势:提高患者的健康素养和疾病预防意识;降低医疗机构的医疗成本;通过智能分析,为患者提供个性化的健康宣教内容。

3.AI赋能临床治疗场景

(1)AI辅助诊断

功能:利用深度学习等技术,对医学影像进行分析,辅助医生进行疾病诊断。

优势:提高诊断的准确性和效率,减少漏诊和误诊,为医生提供更全面的诊断信息。

(2)AI辅助诊疗

功能:基于患者的病史、检查结果等数据,为医生提供辅助诊断,并提供个性化的治疗建议。

优势:帮助医生制定更合理的治疗方案;提高治疗效果;降低医疗风险。

(3)AI病历质控

功能:对电子病历进行自动检查,发现潜在的错误或遗漏。

优势:提高病历的质量和完整性;降低医疗风险;为医疗机构提供可靠的病历数据支持。

4.AI赋能医生助手场景

(1)AI自动化病历

功能:通过自然语言处理技术,自动将患者的就诊信息转化为电子病历。

优势:减轻医生书写病历的工作负担;提高病历的准确性和完整性;为医疗机构提供高质量的病历数据。

(2)AI就医咨询助手

功能:医生的AI分身,为患者提供实时的在线咨询服务,包括病情咨询、用药咨询、健康建议等(医生空闲时可浏览并补充回复,或者作为助手供医生使用)。

优势:分担医生的咨询工作量,使医生有更多时间专注于核心医疗任务,如诊断和治疗。同时通过大量咨询数据的积累,AI咨询助手可以不断优化其算法,提高咨询服务的准确性和效率。

当然可能还有更多的应用场景,但至少以上这几方案,在需求、技术、实现成本方案,个人感觉都已很成熟,预计会快速得到应用推广。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值