摘要:2024 年作为 AIGC 应用元年,AIGC 备受瞩目。本文聚焦于 AIGC 在多个垂直领域的应用情况,阐述其成熟的应用场景如何加速数智化进程融合。AIGC 不仅在数字内容产业、专业性行业、复杂领域以及消费行业等多个垂直领域展现出强大的应用能力,还在各个领域带来了创新和变革,为各行业的发展注入新动力。
-
AIGC生成能力加速数智化进程融合
-
垂直领域的成熟应用场景
01.AIGC生成的能力加速数智化进程融合
AIGC的生成能力让数智化进程加速,主要体现在顾问式服务、贴心的沟通交流、专家级的数字员工、放飞想象的翅膀
顾问式服务
-
知识提炼与应用广泛化
-
在金融、医疗、法律、财务等专业性极强的领域,AIGC 可以对特定行业、场景的数据进行专业知识的提炼、分析和加工。例如在金融领域,AIGC 可分析大量的金融数据和法规文件,提炼出关键知识用于风险评估和投资策略制定。在医疗领域,它能从海量的医学文献和临床案例中提取知识,为医生提供诊断和治疗的参考。
-
这些专业知识的提炼使得 AIGC 能够像专业顾问一样,为企业和专业人士提供准确和有价值的信息,改变了以往单纯依靠人工经验和有限知识储备的服务模式,加速了行业的数智化进程。
-
智能决策支持
-
AIGC 通过对数据的分析和知识的整合,能够为企业的决策提供支持。在企业的战略规划、市场分析、产品研发等方面,它可以基于自身学习到的知识和算法,给出合理的建议和预测。比如在企业的市场拓展决策中,AIGC 可以分析市场趋势、竞争对手情况以及自身产品的优势和劣势,帮助企业制定更明智的市场进入策略,提高决策的科学性和效率,推动企业数智化决策模式的发展。
贴心的沟通交流
-
自然语言处理能力提升
-
AIGC 具备强大的自然语言处理能力,能够更好地理解用户的意图和需求。无论是在客户服务、智能助手还是人机交互的场景中,它都可以以更自然、更类人的方式与用户进行交流。例如在智能客服场景中,AIGC 可以准确理解用户的问题,并给出清晰、合理的回答,避免了传统客服系统中常见的答非所问的情况,极大地提升了用户体验。
-
个性化交互体验
-
AIGC 可以根据用户的历史交互记录、偏好和行为数据,实现个性化的沟通交流。它能够针对不同用户的特点和需求,提供定制化的服务和建议。比如在电商领域,AIGC 可以根据用户的购买历史和浏览偏好,为用户推荐符合其兴趣的商品,并以贴心的语言与用户进行互动,增加用户的购买意愿和忠诚度,促进电商行业数智化服务的升级。
专家级的数字员工
-
专业技能模拟
-
AIGC 可以模拟专业人士的技能和知识,成为企业流程中的 “超级员工”。在一些需要专业技能和知识的岗位上,如法律文档审核、财务报表分析等,AIGC 可以通过学习大量的专业案例和知识,具备类似专业人员的能力。例如在法律领域,AIGC 可以对法律文档进行快速审核,识别其中的法律风险和问题,为律师节省时间和精力,提高工作效率。
-
高效工作执行
-
作为数字员工,AIGC 可以不知疲倦地工作,能够快速处理大量的任务。它可以在短时间内完成复杂的数据分析、内容生成等工作,并且能够保证较高的质量。例如在新闻媒体行业,AIGC 可以根据新闻事件和相关数据,快速生成新闻报道初稿,供记者和编辑进一步修改和完善,提高新闻生产的效率,推动媒体行业数智化生产模式的变革。
放飞想象的翅膀
-
创意激发与拓展
-
在游戏、娱乐、影视、营销、广告、教育等需要更多灵感及创意的领域,AIGC 可以借助其强大的学习和生成能力,为创意工作者提供更多的创意素材和灵感来源。例如在广告创意设计中,AIGC 可以根据产品特点和目标受众,生成各种创意概念和设计方案,激发广告设计师的想象力,拓展创意的边界。
-
创新流程加速
-
AIGC 通过规模化及高效生成模式,能够加速创意内容的制作流程。在影视制作中,它可以快速生成剧本初稿、角色设定等内容,缩短制作周期。在教育领域,AIGC 可以根据教学目标和学生特点,快速生成教学课件和学习材料,提高教育资源的生产效率,促进创意产业和教育行业等的数智化创新进程。
02.垂直领域的成熟应用场景
一、数字内容产业
1、内容生产加速
AIGC 技术使机器在内容生产过程中逐渐实现 “自动化”。从内容生产模式的分级来看,从最初的生产人生产内容,到机器辅助审核、加工,再到机器有条件自动生产内容,甚至向机器高强度和完全自动生产内容发展。例如在长视频制作中,应用层的创意生成环节可整合文本生成和图像生成模型,视频生成环节需要长视频生成和音频生成模型,宣发播映环节需要短视频生成、音频生成和图片生成模型等,AIGC 贯穿整个产业链,降低了制作环节难度,同时对产业链上游的创意环节和下游宣发播映环节的重要性提升起到了推动作用。
2、游戏行业变革
在游戏开发过程中,AIGC 涉及诸多方向。从市场分析、策划到原型、开发、测试和上线等各个阶段,AIGC 都能提升内容生成效率和效果。比如在 3D 角色动作、图像和文本素材生成、3D 角色模型等方面,AIGC 可以快速生成相关内容,加速整个开发流程。
二、专业性行业
1、金融领域
AIGC 可直接嵌入金融工作流程,自动化完成繁琐工作。它可以通过搜索网络、分析公开文件、与财务数据源集成以及利用语言大模型为上市和私营公司生成文件,还能以客户自定义格式自动生成报告。例如在银行流程中可实现手动工作的自动化,在审计流程中帮助审计员缩短审计时间,在保险流程中为客户节省费用并简化流程,在风控流程中实现手动风险和合规操作的自动化等。同时,像 Stripe、Klarna 等金融科技公司利用 AIGC 技术提升了用户体验,包括简化用户体验、打击欺诈行为、提高购物转化率和客户服务响应速度等。
2、医疗行业
AIGC 能够处理多种数据类型,适用于不同医疗场景。它可以快速生成医疗报告、病例摘要等文本内容,提高医生工作效率。还能整合和分析大量医学文献和临床数据,为医生提供决策支持,生成易懂的医疗健康教育内容,帮助患者更好地理解疾病和治疗方案。在诊前、诊中、诊后各个环节都能发挥作用,如在诊断环节提高诊断准确性,在手术环节协助选择最佳治疗路径并提供实时导航和机器人辅助,在康复环节生成个性化康复训练方案并持续监测调整等。
三、复杂领域
1、制造业
在研发设计方面,如 CALA 时装设计平台将生成式设计工具整合到服务体系中,设计师输入相关设计概念关键词就能迅速产生服装设计初稿,缩短设计周期。在工业代码生成上,Siemens 与微软合作推出的工具可让用户迅速生成、优化自动化代码并加速仿真流程。在知识管理与问答助手方面,Andonix 推出的 AI 驱动制造聊天机器人 Andi 能实现工厂数据的智能化分析和处理,为工人提供支持。在研发设计软件辅助上,Back2CAD 基于多种支持推出 CADGPT™,具备多种功能。
在生产计划、销售管理、采购管理、车间管理、仓库管理、财务管理等环节,AIGC 也能通过分析相关数据,生成计划、报告和优化建议等,提高各环节的效率和准确性。
以下是 AIGC 在 ERP 各个领域的应用示例:
产品开发
在产品开发阶段,AIGC 技术能自动提取和分析相关数据,生成详细的产品信息和参数配置。这一过程显著提高了产品数据建档的效率和准确性,确保产品数据的一致性和可用性,为后续的生产和供应链管理打下坚实基础。例如,在设计一款电子产品时,AIGC 可以根据市场需求和技术标准,快速生成产品的各项规格参数,如尺寸、重量、性能指标等,同时还能对不同组件之间的兼容性进行分析,为研发团队提供全面的设计参考。
生产计划
AIGC 通过分析生产数据和历史经验,辅助生成合理的生产计划和资源配置方案。它确保生产流程的顺畅和资源的合理配置,提高生产效率和响应速度。比如,在一家服装制造企业中,AIGC 可以根据不同季节的订单需求、面料库存情况以及生产线的产能,制定出每个季度的生产计划,包括不同款式服装的生产数量、生产时间安排以及所需的人力和设备资源等,使企业能够更好地应对市场变化。
销售管理
AIGC 能够帮助分析客户数据,生成客户画像和忠诚度管理方案。通过精准的客户洞察和个性化的服务,增强客户忠诚度和企业竞争力。例如,一家电商企业利用 AIGC 分析客户的购买历史、浏览行为、评价反馈等数据,为每个客户建立详细的画像,了解他们的喜好和需求,从而制定针对性的营销策略,如个性化推荐商品、提供专属优惠等,提高客户的购买转化率和忠诚度。
采购管理
在采购管理环节,AIGC 技术可以辅助评估供应商绩效和风险,生成供应商优化建议。这有助于提高供应商管理效率,降低采购风险,并优化供应链合作,确保物料供应的稳定性和成本效益。例如,一个制造企业使用 AIGC 对供应商的交货及时性、产品质量、价格波动等数据进行分析,筛选出优质供应商,并与他们建立更紧密的合作关系,同时对存在风险的供应商及时采取措施,如调整采购份额或要求改进,以保障原材料的稳定供应。
车间管理
AIGC 技术能够辅助分析车间检验数据,生成车间检验结果和改进建议。这种自动化的检验管理提高了检验效率,确保产品质量的一致性,并为持续改进提供了数据支持。例如,在汽车制造车间,AIGC 可以对零部件的检验数据进行实时分析,快速发现不合格产品,并追溯其生产环节,同时为改进生产工艺提供建议,如调整设备参数、加强工人培训等,以提高产品质量。
仓库管理
AIGC 可以辅助进行库存盘点和分类,生成库存盘点结果和优化建议。这有助于提高库存管理效率,优化库存结构,减少库存积压和过剩,提高资金周转率。比如,在一个大型零售企业的仓库中,AIGC 可以通过对库存商品的数量、出入库时间、销售频率等数据进行分析,合理安排库存布局,确定哪些商品需要补货,哪些商品库存过多需要促销或退货处理,从而提高仓库空间的利用率和资金的使用效率。
财务管理
AIGC 技术能够辅助分析成本数据,生成成本分析报告和优化建议。这有助于提高成本管理效率,降低企业成本,提高盈利能力,为企业的财务健康和可持续发展提供支持。例如,一家企业使用 AIGC 对生产成本、销售成本、管理成本等各项成本数据进行分析,找出成本较高的环节和项目,如原材料采购成本过高、营销费用浪费等,并提出相应的改进措施,如寻找更优质的供应商、优化营销渠道等,以降低企业总成本。
2、矿业领域
通过对地质测量、矿产资源储量、采矿、选矿、资源节约与综合利用、生态环境保护等各要素实现数字化、自动化、信息化和协同化管控,建设具备感知、分析、推理、判断、决策能力的现代化智能矿山。利用垂直模型实现专业知识的高效利用,逐步实现综合协调管控智能化,包括露天矿山和井工矿的智能化改造,涉及穿孔、爆破、铲装、运输等多个环节的智能化升级。
四、消费行业
1、从战略角度,AIGC 的集成使用可以激发新的商业模式。在市场研究与洞察方面,可协助分析消费者行为数据等,为企业提供市场洞察和消费者偏好预测。在产品开发中,能基于消费者需求和趋势快速生成新产品概念和设计方案。在供应链优化上,可帮助预测市场需求,优化库存管理。在品牌管理方面,能监控品牌形象和声誉并自动生成正面内容。在销售策略上,可协助分析销售数据和趋势,提供定价、促销和销售策略建议等。
五、其它领域的典型探索场景示例
1、利用AIGC对于非结构数据的优势
2、利用AIGC技术,在工作流程中实现对人的辅助
3、利用AIGC进行数据及知识库的管理
4、结合知识及交互服务,实现顾问式销售服务模式
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。