字节 HLLM:大模型与推荐系统结合的新范式

一、背景

我们此前已经探讨过许多关于大模型的研究与应用,但尚未涉及其在搜索、广告和推荐场景中的实践与探索。本篇文章将以字节跳动的 HLLM 为切入点,深入了解大模型在搜广推领域的应用及其独特价值。同时,我们也计划在后续文章中持续关注并分享这一领域的最新进展与实践案例。

对应的论文为:[2409.12740] HLLM: Enhancing Sequential Recommendations via Hierarchical Large Language Models for Item and User Modeling [1]

对应的代码库为:GitHub - bytedance/HLLM: HLLM: Enhancing Sequential Recommendations via Hierarchical Large Language Models for Item and User Modeling [2]

二、摘要

LLM 在多个领域取得了显著成就,许多研究工作也在探索其在推荐系统中的潜力。然而,迄今为止,这些尝试仅在传统推荐模型基础上实现了有限的改进。此外,三个关键问题仍未得到充分探讨:

  • 首先,LLM 预训练权重所蕴含的实际价值,常被视为世界知识的体现;

  • 其次,针对推荐任务进行微调的必要性;

  • 最后,LLM 在推荐系统中是否能展现出与其他领域相同的可扩展性优势。

本文提出了一种新颖的分层大型语言模型(Hierarchical LLM, HLLM)架构,旨在提升序列推荐系统性能。该方法采用双层模型结构:

  • 第一层 Item LLM:从 Item 的详细文本描述中提取丰富的内容特征;

  • 第二层 User LLM:利用这些特征,基于用户交互历史预测其未来兴趣。

大量实验表明,该方法可以有效利用开源 LLM 的预训练能力,进一步微调后性能显著提升。此外,HLLM 展现出卓越的可扩展性。同时,HLLM 在训练和服务推理效率方面表现优异,适用于实际应用场景。在 PixelRec 和 Amazon Reviews 两个大规模数据集上的评估表明,HLLM 达到了当前 SOTA 水平,大幅超越传统的基于 ID 的模型。在线 A/B 测试中,HLLM 展示了显著的增益,验证了其在实际推荐场景中的影响力。

三、引言

3.1 介绍

推荐算法是一个经典而复杂的问题,要求理解用户兴趣以预测其在各类 Item 上的未来行为。有效推荐的关键在于准确建模 Item 和用户特征。当前主流方法主要基于 ID,将 Item 和用户转化为 ID,并创建相应的 Embedding。为捕捉多样且随时间变化的用户兴趣,当前有多种序列建模方法,在序列推荐中显示出显著成效。然而,这些方法通常以 Embedding 参数为主导,模型规模相对较小,导致两大缺陷:

  • 过度依赖 ID 特征,导致冷启动场景下表现不佳;

  • 神经网络较为浅层,难以建模复杂多样的用户兴趣。

随着 ChatGPT 的出现,LLM 在各领域取得了显著突破,展现出令人瞩目的世界知识和推理能力。这激发了研究者进一步探索将 LLM 整合进推荐系统([2309.01157] Large Language Models for Generative Recommendation: A Survey and Visionary Discussions [3])。这些探索大致可分为三类:

  • 利用 LLM 为推荐系统提供精细化信息或补充信息,如用户行为总结和 Item 信息扩展;

  • 将推荐系统转变为与 LLM 兼容的对话驱动格式;

  • 改造 LLM 以处理超越文本输入输出的推荐任务,包括将身份特征输入 LLM 的方法,以及用 LLM 替代现有模型,直接针对 CTR 等目标进行优化的策略。

尽管取得了这些进展,将 LLM 与推荐系统整合仍面临显著的复杂性和有效性挑战:

  • 主要问题是,将用户行为历史作为文本输入 LLM 会导致输入序列非常长。因此,与基于 ID 的方法相比, LLM 需要更长的序列来表示相同时间跨度的用户行为,而 LLM 中自注意力模块的复杂度与序列长度呈二次方增长。

  • 此外,推荐单个 Item 需要生成多个文本 Token,导致多次 Forward,从而降低了效率。

  • 在有效性方面,现有基于 LLM 的方法相较于传统方法的性能提升并不显著,这引发了对 LLM 潜力是否已充分挖掘的疑问。

此外,一些关键问题仍未得到充分探讨:

  • 首先,预训练 LLM 权重(常被视为包含世界知识)的实际价值需要进一步研究。尽管 LLM 展示了令人印象深刻的 zero-shot 和 few-shot 能力,但它们在大规模推荐数据上训练时的价值尚不明确。

  • 其次,推荐任务中微调的必要性存疑。预训练海量语料库的 LLM 展现出强大的世界知识,但进一步在推荐任务上微调是否会提升或削弱性能仍有待观察。

  • 最后,LLM 的可扩展性——这在其他领域已验证具有扩展定律的标志性特征——在推荐系统背景下的验证尚需进行。尽管一些研究已成功验证了推荐领域中的扩展定律([2402.17152] Actions Speak Louder than Words: Trillion-Parameter Sequential Transducers for Generative Recommendations [4]),但这些模型的参数量远小于 LLM。参数量超过 1B 的模型在推荐领域是否表现出良好的可扩展性仍是一个悬而未决的问题。

作者的主要贡献可总结如下:

  • 引入了一种新的 HLLM 框架用于序列推荐。该方法在大规模学术数据集上显著超越了基于 ID 的经典模型,并在实际工业环境中验证了其带来的实质性效益。此外,该方法展现了卓越的训练和推理效率。

  • HLLM 有效地将 LLM 预训练阶段编码的世界知识迁移至推荐模型中,涵盖了 Item 特征提取和用户兴趣建模。然而,基于推荐目标的特定任务微调仍是必要的。

  • HLLM 表现出卓越的可扩展性,随着数据量和模型参数的增加,其性能持续提升。这种可扩展性凸显了该方法在应用于更大规模数据集和模型时的潜力。

3.2 DIN 模型案例

深度兴趣网络(Deep Interest Network,DIN) 是阿里 2017 年提出的点击率预估模型,如下图 Figure 2 所示,相比传统的 DNN 模型,主要的贡献是:引入了注意力机制,通过局部激活单元自适应地学习用户兴趣的表示。

当然,我们这里不是为了介绍 DIN,而是希望通过 DIN 简单介绍一下相应场景对应的各种输入(特征)及执行过程,以便更好的理解 HLLM,以电商场景为例。

User Profile Features(用户画像特征):主要是用户的各种属性信息,比如性别、年龄区间、地区、是否有电话、手机类型(IPhone、Android)、是否有邮箱以及各种标签等。每种属性都可以对应一个独特的 ID,根据 ID 可以查表获取对应的 Embedding。然后这些 Embedding 会被 Concat 到一起作为用户画像特征。

User Behaviors(用户历史行为):主要是用户的浏览、收藏(加入购物车)、购买相关记录;然后,还可以按照日期进一步展开,比如最近 1 天、3 天、7 天、15 天、30 天、90 天 的上述记录;最后,每个商品(Good,Item)还可以对应多个信息,比如商品 id,店铺 id,类别 id(也可以有多个类别,比如一级大类,二级子类,三级细类)。这样就可以得到如下维度的用户行为数据:

(浏览、收藏、购买) x (1天、3天、7天、15天、30天、90天) x (商品、店铺、类别)

当然,上述其实隐藏了一个条件,不同用户的行为是不一样的,因此也会有些约束,比如 30 天浏览的所有商品中只会选择 Top 50 的商品。经过这个过程每个 User 都对应了 N 个 Goods,每个 Good 对应 3 个 ID,这 3 个 ID 的 Embedding 会 Concat 到一起作为这个 Good 的 Embedding。

Candidate Ad(候选广告/商品):提供一个候选广告或者商品,最终目标是判断用户点击广告或购买商品的概率。通常会有多个广告或者商品,但是这里不是一起输入的,而是分别判断,也就是 User0 + Item0,User0 + Item1, User0 + Item2, User1 + Item0, ….。这样也就引申出训练和推理阶段的不一致:

  • 训练阶段:一个 Batch 中包含不同的 User,每个 User 一个 Item(正样本或负样本)。

  • 推理阶段:一个 Batch 中一个 User,或少量几个,每个 User 多个 Item,需要对每个 User + Item 进行打分。

这样的话,推理阶段在一个 Batch 里,每个 User 都只用查表 1 次即可,不用和每个 Item 计算时都再重复查找对应的 User Profile Features 和 User Behaviors;当然,训练和推理阶段也都可以通过 Cache 来加速。

四、方法

本节中,首先阐述问题定义,随后介绍 HLLM,并详细说明如何将预训练的 LLM 应用于推荐系统,涵盖 Item 特征提取与用户兴趣建模。最后,还探讨如何使 HLLM 与推荐系统的目标相契合,从而显著提升其在推荐任务中的表现。

4.1 问题定义

作者研究的是序列推荐任务,其定义如下:给定用户 u ∈ U,以及用户 u 按时间顺序排列的历史交互序列 U = {I1, I2, …, In},预测下一项 In+1,其中 n 为序列 U 的长度,I ∈ ፗ。每个 Item I 具有其对应的 ID 及文本信息(如标题、标签等),但本文提出的方法仅利用文本信息。

4.2 HLLM 架构

当前,大量基于 LLM 的推荐系统将用户历史行为展平为纯文本输入,供 LLM 处理。这种方法导致输入序列极为冗长,计算代价很高。为减轻用户序列建模的负担,作者提出了 HLLM,如下图 Figure 1 所示,该方法将 Item 建模与用户建模解耦。具体而言,首先利用 Item LLM 提取 Item 特征,将复杂的文本描述压缩为 Embedding。随后,基于这些 Item 特征,通过 User LLM 对用户画像进行建模。此外,为确保与预训练 LLM 的良好兼容性并提升可扩展性,作者仅引入最小化的结构调整,并设计了简洁高效的训练目标。

4.3 Item LLM

作者提出了一种名为 Item LLM 的方法,用于提取 Item 特征。该方法以 Item 的文本描述为输入,并输出其 Embedding。尽管 LLM 在文本理解方面表现出色,但其应用主要局限于文本生成场景,鲜有研究将其作为特征提取器。这里作者在 Item 文本描述的末尾添加了一个特殊 Token [ITEM],以实现特征提取。

具体而言,如上图 Figure 1 所示,对于 Item I,首先将其对应的文本属性展平为句子 T,并在其前附加一个固定的 Prompt。经过 LLM Tokenizer 处理后,在序列末尾额外追加一个特殊 Token [ITEM],从而形成输入 Token 序列 {t1, t2, …, tm, [ITEM]},其中 m 表示文本 Token 的长度。最后,与特殊 Token [ITEM] 相对应的最后一层隐藏状态被视为 Item 的 Embedding。

4.4 User LLM

User LLM 旨在建模用户兴趣,这是推荐系统中的另一关键环节。原始用户历史序列 U = {I1, I2, …, In} 可通过 Item LLM 转换为历史特征序列 {E1, E2, …, En},其中 Ei 表示 Item Ii 的 Embedding。User LLM 以该历史特征序列作为输入,并基于先前交互序列预测下一 Item Embedding。如上图 Figure 1 所示,User LLM 对应于 Ei 的输出为 E’i+1,预期为 Ii+1 的 Embedding。

与传统文本输入输出的 LLM 不同,此处 User LLM 模型的输入与输出均为 Item Embedding。因此,作者舍弃预训练语言模型中的 Word Embedding,但保留所有其他预训练权重。实验表明,这些预训练权重对推理用户兴趣极为有益。

4.5 推荐目标训练

现有的 LLM 均通过自然语言语料库进行预训练。尽管这些模型具备丰富的世界知识和强大的推理能力,但其性能与推荐系统所需的能力之间仍存在显著差距。遵循其他研究的最佳实践,作者在预训练 LLM 基础上采用了监督微调(SFT)方法。

推荐系统可分为生成式推荐(Generative Recommendation)和判别式推荐(Discriminative Recommendation)两大类。值得注意的是,仅需对训练目标进行适当调整,所提出的 HLLM 架构就可以适用于这两类推荐系统。

4.6 生成式推荐

[2402.17152] Actions Speak Louder than Words: Trillion-Parameter Sequential Transducers for Generative Recommendations [4] 中提出了一种成功的生成式推荐解决方案,涵盖了检索与排序环节。本文在两个主要方面与其有所不同:模型架构升级为搭载预训练权重的 LLM,且输入特征由 ID 转变为基于文本输入的 LLM 特征。上述差异对训练与服务推理策略影响甚微,因此,作者大体沿用了所提出的方法。

采用下一 Item 预测策略作为生成式推荐的训练目标,旨在根据用户历史中先前 Item 的 Embedding 生成下一 Item 的 Embedding。具体而言,训练过程中运用了 InfoNCE 损失函数。对于 User LLM 输出序列中的任一预测 E′i,正样本为 Ei,负样本则从排除当前用户序列的数据集中随机抽取。损失函数可表述为:

其中,s 为具备可学习温度参数的相似度函数,Ej,i 表示第 j 位用户历史交互中由 Item LLM 生成的第 i 项 Embedding,E′j,i 则为第 j 位用户由 User LLM 预测的第 i 项 Embedding。N 代表负样本数量,Ej,i,k 对应 E′j,i 的第 k 个负样本 Embedding。b 表示 Batch 内用户总数,n 为用户历史交互的长度。

4.7 判别式推荐

鉴于判别式推荐模型在业界仍占主导地位,作者也针对判别式推荐模型下的 HLLM 提出了一套应用方案。判别式模型的优化目标在于,给定用户序列 U 及目标 Item Itgt,判断用户是否对该目标 Item 感兴趣(如通过点击、点赞、购买等行为)。如下图 Figure 2 所示,在保持 Item LLM 不变的前提下,判别式推荐存在两种 User LLM 变体。

  • Early Fusion 将目标 Item Embedding Etgt 附加至用户历史序列末端,通过 User LLM 生成高阶交叉特征,最终将此交叉特征输入预测头以产生最终的逻辑输出。

  • Late Fusion 则首先利用 User LLM 提取与目标 Item 无关的用户特征,其方式类似于 Item LLM 的特征提取。在此过程中,用户序列末尾添加了特殊 Token [USER] 以抽取用户表征。随后,用户 Embedding 与目标 Item Embedding 共同输入预测头,以预测最终的逻辑输出。

这两种变体也各有优劣:

  • Early Fusion 因其深度整合用户兴趣与目标 Item 的特点,往往表现更优,但同时应用于众多候选 Item 时存在效率问题。(PS:也就是有几个 Item 就需要进行几次 Forward 操作,但这几次 Forward 有公共的 Prefix,也就可以利用类似 Tree Attention 的方式进行一次推理实现。)

  • Late Fusion 的不同候选 Item 共享相同用户特征,更具效率,但通常会导致性能有所下降。

判别式推荐的训练目标通常是一项分类任务,例如预测用户是否会点击等。以二元分类为例,其训练损失可表示为:

其中,y 表示训练样本的标签,x 表示预测的逻辑值。

经验表明,下一 Item 预测亦可作为判别模型中的辅助损失,以进一步提升性能。因此,最终损失可表述如下:

其中,λ 用于调控辅助损失的权重。

五、实验

5.1 实验配置

作者通过实验期望解答以下研究问题:

  • RQ1:LLM 的通用预训练与推荐目标的微调是否能提升最终推荐性能?

  • RQ2:HLLM 是否具备良好的可扩展性?

  • RQ3:相较于其他最先进模型,HLLM 的优势是否显著?

  • RQ4:训练与推理效率与基于 ID 的模型相比表现如何?

  • 在线 A/B 测试效果如何?

针对离线实验,作者在两个大规模数据集上评估 HLLM:

  • PixelRec,包含三个子集:200K、1M 和 8M。

  • Amazon Books Reviews。

遵循先前研究,采用相同的数据预处理和评估协议,以确保公平比较。如下图 Table 1 和 Figure 5 提供了预处理后数据集的更详细分析:

作者采用留一法划分数据为训练集、验证集和测试集。性能评估指标为 Recall@K(R@K)和NDCG@K(N@K)。所有开源数据集仅用于离线实验中的训练与评估。

5.2 基线与训练方法

作者采用了两种基于身份的序列推荐系统 SASRec 以及 HSTU 作为基线。这两者均面向工业应用,并展现了当前 SOTA 水平。

  • 对于离线实验,采用生成式推荐,以与其他方法保持一致;

  • 对于在线 A/B 测试,则使用判别式推荐,以更好地契合在线系统的需求。

在 HLLM-1B 模型中,分别使用 TinyLlama-1.1B 作为 Item LLM 和 User LLM。相应地,在 HLLM-7B 模型中,采用 Baichuan2-7B。由于资源限制,HLLM 模型在 PixelRec 和 Amazon Reviews 数据集上仅训练了 5 个 Epoch,而其他模型则分别训练了 50 和 200 个 Epoch。学习率设定为 1e-4,每个 Item 的文本长度被截断至最多 256 个字符。在 PixelRec 数据集上,遵循 PixelNet 的设置,采用 512 的 Batch Size,最大序列长度设定为 10,正负样本比例为 1:5632。在 Books 数据集上,使用 128 的 Batch Size,最大序列长度设定为 50,负样本数量为 512。

为确保公平比较,作者还实现了 SASRec-1B(将其网络结构替换为 TinyLlama-1.1B)和 HSTU-1B。HSTU-1B 保持与 TinyLlama-1.1B 相同的隐藏层大小和层数,但去除了传统的 FFN,其参数量仅为 462M。

5.3 预训练与微调(RQ1)

从如下图 Table 2 可以清晰看出,预训练权重对 HLLM 具有显著收益,涵盖了 Item 特征提取与用户兴趣建模两个方面。

此外,如下图 Table 3 进一步显示,模型性能与预训练 Token 数量呈正相关,表明预训练权重的质量同样对推荐任务产生影响。然而,在对话数据上的 SFT 却可能导致轻微的负面效应,这可能是因为世界知识主要在预训练阶段获取,而 SFT 主要提升的是指令遵循能力,对推荐任务并无直接帮助。

同样明显的是,同时对 Item LLM 和 User LLM 进行微调对于超越基于 ID 的模型至关重要,如下图 Table 4 所示。当冻结 Item LLM 而仅微调 User LLM 时,采用 TinyLlama-1.1B 最后一层所有 Token 输出的均值池化作为 Item 特征,发现性能极为低下。这表明,以预测下一个 Token 为目标训练的 LLM 并不直接适用于特征提取器。同样地,当使用在 Pixel200K 上微调过的 Item LLM 并冻结 User LLM 时,性能依然很差。

5.4 模型参数扩展(RQ2)

如下图 Table 5 和 Table 6 展示了增加模型参数量后的实验结果。结果表明,无论是 Item LLM 还是 User LLM,其参数量的增长均持续带来性能提升。

最终,作者在 Amazon Books 数据集上将 Item LLM 和 User LLM 的参数规模从 1B 扩展至 7B。如下图 Table 7 所示,进一步提升了模型性能,充分证明了 HLLM 架构的卓越扩展性。

为探究数据量扩展性,作者从 Pixel8M 中抽取了多种不同规模的数据进行训练,数据量从 0.1M 至 8M 不等。如下图 Figure 3 可以看出,HLLM 在不同数据规模下均展现出显著的扩展能力。随着数据量的增加,模型性能得到显著提升,且在当前数据规模下未观察到性能瓶颈。

5.5 HLLM 与 SOTA 方法对比(RQ3)

如上图 Table 7 所示,作者将 HLLM 的性能与当前 SOTA 模型进行了比较,这些模型包括基于 ID 的模型如 SASRec 和 HSTU,以及基于文本的模型 LEARN,在 Pixel8M 和 Amazon Book Reviews 数据集上进行了测试,这些模型均表现出卓越的性能。

显而易见,HLLM 在性能上具有显著优势,在所有数据集的所有指标上均显著超越其他模型。在相同的实验设置下,相较于表现最差的基线模型,HLLM-1B 在 Pixel8M 上的平均提升达到了22.93%,而在 Books 数据集上更是实现了平均 108.68% 的显著提升。相比之下,基于 ID 的模型在 Pixel8M 上的最大提升仅为 5.37%,在 Books 上为 64.96%。

此外,值得注意的是,当基于 ID 的模型增加负样本数量和 Batch 大小时,性能提升相对有限,特别是在 R@200 指标上,HSTU-large 仅增加了 0.76,而 HLLM-1B 在相同设置下增加了 2.44。通过进一步增加模型参数,HLLM-7B 相较于基线实现了 169.58% 的显著提升。

Table 7 中还显示,即使基于 ID 的模型完全收敛,增加参数所带来的收益也微乎其微。在 Pixel8M 上,SASRec-1B 和 HSTU-1B 相较于较小规模的模型,提升相对有限;而在 Books 数据集上,SASRec-1B 在所有指标上甚至出现了下降。相比之下,对于 HLLM,从 HLLM-1B 扩展到 HLLM-7B 仍能在推荐任务上带来相应的性能提升,充分展示了 HLLM 架构的优越性。

5.6 训练与推理效率(RQ4)

首先,HLLM 在训练数据效率方面优于基于 ID 的模型。如上图 Figure 3 所示,HLLM 仅需相当于基于 ID 方法 1/6 至 1/4 的数据量,即可达到同等性能水平。

先前的广泛实验表明,对整个 HLLM 进行全面微调虽显著提升性能,但在推理过程中需实时编码所有 Item,效率较低。得益于 HLLM 中 Item 与 User 编码的解耦,HLLM 可以通过预先缓存 Item Embedding,有效降低计算复杂度。为验证 Item 缓存的可行性,作者使用 Pixel8M 数据集中序列长度超过 10 的序列进行预训练,截断序列至第十个位置以防止数据泄露,覆盖了 300 万用户。基于此预训练模型,作者冻结了 Item LLM,仅对 Pixel8M 上的 User LLM 进行微调。如下图 Table 8 所示,尽管冻结 Item LLM 导致部分指标下降,但性能仍超越基于 ID 的模型,证明了 Item Cache 的有效性。鉴于工业场景中用户行为数量远超 Item 数量,HLLM 的训练与推理成本可与基于 ID 的模型相匹配。值得注意的是,这里预训练数据量不足 Pixel8M 的一半,且部分 Item 未出现在预训练数据中,仍取得了令人满意的表现。工业数据实验表明,随着预训练数据量的增加,Item Cache 与全面微调之间的差距显著缩小。

5.7 在线 A/B 测试

除了离线实验,HLLM 还被针对性地应用于实际工业实践中,并取得了成功。为简化流程、提高灵活性,并更好地与在线系统对接,作者采用了 HLLM-1B 模型,并结合判别式推荐方法的 Late Fusion 变体进行优化。在性能与效率的平衡考量下,训练过程分为以下三个阶段:

  • 第一阶段:对所有 HLLM 参数进行端到端训练,包括 Item LLM 和 User LLM,采用判别损失函数。为加速训练,用户历史序列长度被截断至 150。

  • 第二阶段:首先利用第一阶段训练好的 Item LLM 对推荐系统中的所有 Item 进行编码并存储其 Embedding。随后,仅通过从存储中检索必要的 Item Embedding,继续训练 User LLM。由于此阶段仅训练 User LLM,显著降低了训练需求,使得用户序列长度得以从 150 扩展至 1000,从而进一步提升了 User LLM 的有效性。

  • 第三阶段:经过前两个阶段的大量数据训练后,HLLM 模型参数不再更新。提取所有用户的特征,将其与 Item LLM 嵌入及其他现有特征结合,输入在线推荐模型进行训练。

在推理服务方面,如下图 Figure 4 所示,Item Embedding 在创建时即被提取,而用户 Embedding 则仅对前一日有活动的用户进行每日更新。Item Embedding 与 User Embedding 被存储用于在线模型的训练与推理。采用此方法,在线推荐系统的推理时间几乎保持不变。

最后,作者在排序任务的在线 A/B 实验中测试了 HLLM。关键指标显示,性能提升了 0.705%,效果显著。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值