昨天在公司听了清华大学智能产业研究院现场分享的AI医院小镇。
这是一个虚拟世界,所有的医生、护士、患者都是由LLM驱动的Agent智能体,可以自主交互。它们模拟了整个诊病看病的过程,在涵盖主要呼吸道疾病的MedQA数据集子集上,实现高达93.06%的最新准确率。
一个优秀的智能体,离不开优秀的设计模式。看完这个案例,我赶紧拜读了吴恩达老师最近发表的 4 种主要的Agent设计模式。
吴恩达是人工智能和机器学习领域国际上最权威的学者之一
然后,赶紧整理出来,跟大家分享一下。
模式一、反思(Reflection)
在这个模式里大模型第一次生成的结果并不直接输出,而是把结果重新丢给大模型让其检查、评估。
它会得出第二版本的结果,而这个版本的结果可能比第一版本工作得更好。
用孔子的话说这叫“吾日三省吾身”。
在这个模式里编写的具体Prompt可以运用我们之前分享几个推理模式,如:少样本(Few-shot)、思维链(CoT)、思维树(ToT)、ReAct等等。
这一模式的核心目的是,在不借助外力的情况下,将大模型的推理能力尽可能发挥到极致。
模式二、工具使用(Tool Use)
这一模式是让智能体能够利用外部工具执行特定的任务。
说白了就是“摇人,专业事交给专业人”。
大模型本质是文本预测,并没有算数、执行代码等能力。遇到这些任务,我们可以让大模型生成式子、代码,然后调用计算器、代码解释器来完成。
这个模式的Agent有了外力的帮助,似乎可以变得更强大了。
模式三、规划(Planning)
这种模式是让智能体将一个复杂任务分解成一系列简单的小任务,然后逐一解决。
其实就是“要把大象放冰箱,拢共分几步”,刚听到这个问题是一脸懵逼,但当看到下图的时候,一下子就豁然开朗了。
模式四、多智能体协作(Multiagent Collaboration)
上一个模式的Agent将复杂任务拆解之后,自然而然就需要多个Agent各司其职,相互协作,共同完成复杂的任务。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。