AI大模型测试,都测啥

测试AI大模型是一个多维度和多步骤的过程,涉及多个方面,包括但不限于道德和伦理、偏见性、毒性、诚实性、安全评测等。以下是一些关键的测试方法和考虑因素:

1. 道德和伦理评测:评估AI生成内容是否符合社会公认的道德伦理规范。这可以通过基于专家定义的规范、众包方式、AI辅助评测或混合模式进行。

2. 偏见性评测:关注AI生成内容是否对某些社会群体产生不利影响或伤害,包括对特定群体的刻板印象或贬低信息。

3. 毒性评测:评估AI生成内容中是否含有仇恨、侮辱、淫秽等有害信息,并使用相应的评测基准和工具。

4. 诚实性评测:检测AI生成内容的真实性和准确性,包括问答、对话和摘要任务的数据集,以及基于自然语言推理等评测方法。

5. 安全评测:确保AI大模型在各种应用场景中的安全使用,包括鲁棒性评测和风险评测,例如越狱攻击方法的评估。

6. 行业大模型评测:针对特定领域或行业的大模型进行评测,使用特定领域的评测基准和方法。

7. 平台化评测:使用如PAI大模型评测平台等工具,支持不同基础模型、微调版本和量化版本的对比分析,以及自定义数据集的评测。

8. 分组指标统计:根据业务场景引入分组指标统计,确保每个分组有足够的样本量来表达真实效果。

9. 计算机视觉下的模型效果测试:在计算机视觉领域,使用目标检测、IOU等指标来评估模型效果,并考虑自动化测试和线上效果监控。

10. 自学习与线上效果监控:在业务场景中,使用自学习系统和A/B测试来更新和评估模型,以及构建数据闭环系统。

11. AI辅助测试:利用AI大语言模型辅助软件测试,进行测试用例生成和测试效率提升。

12. 多维度测试:包括基准测试、多样性和覆盖性测试等,使用标准数据集和任务进行评估。

13. 交互式测试:与AI大模型交互,提出针对性问题,解析回答以获取代码风险或优化建议,并输出结果。

这些方法和考虑因素可以帮助确保AI大模型的性能、安全性和可靠性。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### AI大模型自动化测试的方法、工具和框架 #### 方法概述 为了有效实施AI大模型的自动化测试,通常采用分层策略来覆盖不同的抽象级别。这包括单元测试、集成测试以及端到端测试三个主要层面。通过这种方式能够全面验证模型的功能性和性能指标。 - **单元测试**:专注于单个组件或函数级别的准确性评估。对于机器学习算法来说,则意味着要检验特定参数设置下的预期行为是否正确实现。 - **集成测试**:关注多个子系统之间的交互情况,确保各个部分协同工作良好。特别是当涉及到分布式训练环境时尤为关键。 - **端到端测试**:模拟真实应用场景中的输入输出流程,从而确认整个系统的运行状况达到设计要求[^1]。 #### 工具介绍 针对上述提到的不同类型的测试需求,市场上存在多种专门用于支持AI项目的自动化测试解决方案: - **TensorFlow Extended (TFX)**:由Google开发的一套完整的ML流水线管理库,内置丰富的监控与诊断功能,适用于大规模生产环境中部署前后的持续质量保障活动。 - **Great Expectations**:开源的数据验证框架,允许开发者定义并强制执行数据集上的期望条件,有助于提前发现潜在问题所在位置。 - **MagnifAI**:作为一个人工智能驱动的测试平台,不仅限于传统意义上的脚本编写,而是借助大型语言模型(LLM)自动生成测试案例,并能适应多变的实际业务逻辑变化趋势[^2]。 #### 框架应用实例 下面给出一段Python代码片段展示如何基于PyTest框架配合Hugging Face Transformers库来进行简单的BERT预训练模型预结果一致性检查: ```python import pytest from transformers import BertTokenizer, BertForSequenceClassification @pytest.fixture(scope="module") def setup_model(): tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2) return {"tokenizer": tokenizer, "model": model} def test_bert_prediction_consistency(setup_model): text_input_1 = ["This is a positive sentence."] text_input_2 = ["This is also very good!"] inputs_1 = setup_model['tokenizer'](text_input_1, return_tensors='pt') outputs_1 = setup_model['model'](**inputs_1)[0].softmax(dim=-1).tolist()[0] inputs_2 = setup_model['tokenizer'](text_input_2, return_tensors='pt') outputs_2 = setup_model['model'](**inputs_2)[0].softmax(dim=-1).tolist()[0] assert abs(outputs_1[1]-outputs_2[1]) < 0.15, f"Predictions should be similar but got {outputs_1} and {outputs_2}" ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值