MindsDB:一个利用企业数据构建 AI 的平台

MindsDB作为一个开源项目,它旨在将机器学习模型无缝集成到现有的数据库系统中,为用户提供实时的数据预测能力。这个项目的创新之处在于,它能够以简单、直观的方式让开发者和非技术人员都能够利用AI进行数据分析和预测。 它是根据企业数据库定制的AI平台,使用者可以根据数据库、矢量存储和应用程序数据实时创建、提供和微调模型。

简介

MindsDB 的核心理念是使数据库不仅能够存储和检索数据,还能基于这些数据进行智能预测。它是一个透明的层,可以嵌入到任何SQL数据库(如MySQL, PostgreSQL等)之上,使得即使没有深度学习背景的开发人员也能利用其强大的预测功能。MindsDB可直接在数据库中进行建模,省去了数据处理、搭建机器学习模型等头疼的步骤,可以说是一步到位。对于数据分析师、商业分析师无须了解过多数据工程、建模知识,即可开箱使用,非常舒服(一下子降低了建模门槛,人人都是数据分析师,人人都会应用算法了),以下是它的一个大框架:

在这里插入图片描述

左边是数据库or数据仓库,右边是建模常用的python库,mindsdb在中间,相当于直接连接了数据与模型。MindsDB集成了许多数据源,包括数据库、矢量存储和应用程序,以及流行的AI/ML框架,包括AutoML和llm。MindsDB将数据源与AI/ML框架连接起来,并自动化它们之间的日常工作流程。通过这样做,可以将数据和人工智能结合在一起,使定制的人工智能系统能够直观地实现。

应用场景

人工智能工作流自动化

这类应用涉及从数据源获取数据,将其传递给AI/ML模型,并将输出写入数据目的地的任务。

常见的用例是异常检测、数据索引/标记/清理和数据转换。

在这里插入图片描述

这个示例展示了数据充实流,其中输入数据来自PostgreSQL数据库,并通过OpenAI模型传递以生成新内容,新内容保存到数据目的地。

我们从PostgreSQL数据库中获取客户评论。然后,我们部署一个OpenAI模型来分析所有客户评论并分配情感值。最后,为了自动化传入客户评论的工作流,我们创建了一个生成AI输出并将其保存到数据目的地的作业。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

AI系统部署

这类用例涉及创建由多个连接部分组成的AI系统,包括各种AI/ML模型和数据源,并通过api公开此类AI系统。

在这里插入图片描述

常见的用例是代理和助手、推荐系统、预测系统和语义搜索。

以下这个例子展示了人工智能代理,这是MindsDB开发的一个功能。人工智能代理可以被分配特定的技能,包括文本到sql的技能和知识库。技能为人工智能代理提供输入数据,这些数据可以是数据库、文件或网站的形式。

它基于汽车销售数据集创建了一个文本到sql的技能,并部署了一个会话模型,它们都是代理的组件。然后,我们创建一个代理,并将这个技能和这个模型分配给它。可以查询该代理以询问有关存储在指定技能中的数据的问题。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

小结

MindsDB确实是一款非常新颖的建模产品,能直接在数据库中进行建模,给人耳目一线的感觉,它的优势在于,直连数据库并通过简单的SQL关键字即可在数据库中完成建模。总而言之,MindsDB 将AI的力量引入传统数据库,使得预测分析变得普遍且易于实施。无论你是开发人员、数据分析师还是业务决策者,MindsDB 都值得你尝试,它将改变你对数据智能的认知,助你在大数据时代抢占先机。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值