AI应用中基于语音驱动的RAG如何做?

介绍

在当今快节奏的世界中,信息触手可及,我们经常需要寻找复杂问题的答案。但是,如果您只需对设备提问,就能通过语音获得简洁准确的回答呢?

这就是语音驱动的(音频)RAG的出现,它是一种将语音命令的便利性与问答智能相结合的创新系统。

在这里,用户可以通过语音命令与知识库进行互动。通过利用语音识别和自然语言处理的最新进展,Audio RAG 能够无缝地将您的语音问题转换为文本,进而从庞大的知识库中检索相关信息。

Audio RAG 的工作原理

1.录制音频:系统首先使用麦克风录制您的语音。只需提出问题,Audio RAG 就会捕捉您的音频输入。2.语音转换为文本:一旦音频被录制,它将通过语音识别引擎进行处理。这个强大的工具会分析您的语音声学特性,并将其转换为文本格式,同时保留问题的含义和上下文。3.执行问答:在获得转录文本后,Audio RAG 利用先进的语言模型来理解问题背后的含义和意图。然后,它会搜索庞大的知识库,检索最相关的信息,为您提供简洁准确的答案。4.文本转换为语音:LLM 生成的回答将被转换为音频文件。

使用的技术栈

1.GROQ:这是一个快速的AI推理技术,由LPU™ AI推理技术提供支持,能够提供快速、经济且高效的AI。2.gTTS:gTTS(Google Text-to-Speech)是一个Python库和CLI工具,允许您与Google翻译的文本转语音API进行接口操作。它使您能够将文本转换为语音并保存为MP3文件。3.pydub:pydub是一个Python库,它提供了一个简单易用的高级接口,用于操作音频文件。它允许您对音频数据执行各种操作。4.LangChain:这是一个用于大语言模型应用开发的框架。5.HuggingFace嵌入模型:Hugging Face 是自然语言处理(NLP)和人工智能(AI)领域的一个著名平台,以其广泛的预训练模型和用于构建利用这些模型的应用程序的工具而闻名。Hugging Face 提供的一个关键功能是生成嵌入,这些嵌入是文本数据的密集向量表示。它们可用于各种任务,包括语义搜索、文本分类和聚类。6.Streamlit:Streamlit是一个开源Python框架,旨在快速轻松地构建和分享交互式数据应用程序。7.ChromaDB:ChromaDB 是一个开源的向量数据库,旨在促进向量嵌入的存储和检索,使其特别适用于涉及大语言模型(LLMs)和语义搜索的应用程序。

启用音频的RAG

代码实现

安装所需依赖

!pip install langchain langchain_community langchain_groq chromadb sentence_transformers``!pip install -U langchain-huggingface``!pip install -U langchain-chroma``!pip install python-dotenv

创建 .env 文件并设置您的 Groq API 密钥

GROQ_API_KEY=<你的API密钥>

设置 Groq API 密钥

import os``from dotenv import load_dotenv``   ``# 从 .env 文件加载环境变量``load_dotenv()

设置 LLM

llm = ChatGroq(`    `model_name="llama3-70b-8192",`    `temperature=0.1,`    `max_tokens=1000,``)

设置嵌入模型

from langchain_huggingface import HuggingFaceEmbeddings``   ``model_name = "BAAI/bge-small-en-v1.5"``model_kwargs = {"device": "cpu"}``encode_kwargs = {"normalize_embeddings": False}``embeddings = HuggingFaceEmbeddings(`    `model_name=model_name,`    `model_kwargs=model_kwargs,`    `encode_kwargs=encode_kwargs``)

设置文本分割辅助函数

# 文本分割器``def text_splitter():`    `text_splitter = RecursiveCharacterTextSplitter(`        `chunk_size=512,`        `chunk_overlap=20,`        `length_function=len,`    `)`    `return text_splitter

设置 RetrievalQA 辅助函数

# RetrievalQA``def answer_question(question):`    `retriever = vectorstore.as_retriever(search_kwargs={"k": 5})`    `qa = RetrievalQA.from_chain_type(`        `llm=llm,`        `chain_type="stuff",`        `retriever=retriever,`        `return_source_documents=True`    `)`    `result = qa.invoke({"query": question})`    `return result['result']

使用 Groq distil-whisper-large-v3-en 转录音频的辅助函数

distil-whisper-large-v3-en:Distil-Whisper English 是 OpenAI Whisper 模型的一个压缩版本,旨在提供更快、成本更低的英语语音识别,同时保持相当的准确性。

•支持语言:仅限英语

import os``from groq import Groq``   ``# 初始化 Groq 客户端``client = Groq()``   ``# 指定音频文件的路径``filename = "/content/recorded_audio.wav"``   ``def transcribe_audio(filename):`    `# 打开音频文件`    `with open(filename, "rb") as file:`        `# 创建音频文件的转录`        `transcription = client.audio.transcriptions.create(`            `file=(filename, file.read()),  # 必需的音频文件`            `model="distil-whisper-large-v3-en",  # 必需的用于转录的模型`            `prompt="Specify context or spelling",  # 可选的上下文或拼写提示`            `response_format="json",  # 可选的响应格式`            `language="en",  # 可选的语言`            `temperature=0.0  # 可选的温度参数`        `)`        `# 打印转录文本`        `print(transcription.text)`    `return transcription.text

将文本转换为语音的辅助函数

from gtts import gTTS``   ``def text_to_audio(text):`    `# 将文本转换为语音`    `tts = gTTS(text=text, lang='en', slow=False)`    `    # 将音频保存为MP3文件`    `mp3_file = "temp_audio.mp3"`    `tts.save(mp3_file)`    `    return mp3_file

为 Streamlit 应用程序准备的完整代码实现.

请编写一个名为 audio_rag.py 的 Python 脚本。

import streamlit as st``from time import sleep``#from st_audiorec import st_audiorec``from streamlit_mic_recorder import mic_recorder``from streamlit_chat import message``import os``from groq import Groq``from langchain_groq import ChatGroq``from langchain_community.embeddings import HuggingFaceBgeEmbeddings``from langchain.text_splitter import RecursiveCharacterTextSplitter``from langchain.document_loaders import PyPDFLoader``from langchain_chroma import Chroma``from langchain.chains import RetrievalQA``from chromadb.config import Settings``import chromadb``from gtts import gTTS``from pydub import AudioSegment``import os``from dotenv import load_dotenv``   ``# 从 .env 文件加载环境变量``load_dotenv()``设置 Chroma 配置``   ``chroma_setting = Settings(anonymized_telemetry=False)``获取最新的文件路径``   ``def newest(path):`    `files = os.listdir(path)`    `paths = [os.path.join(path, basename) for basename in files]`    `newest_file_path = max(paths, key=os.path.getctime)`    `return os.path.basename(newest_file_path)``文本转换为音频的辅助函数``   ``def text_to_audio(text):`    `# 将文本转换为语音`    `tts = gTTS(text=text, lang='en', slow=False)`    `    # 将音频保存为MP3文件`    `mp3_file = "temp_audio.mp3"`    `tts.save(mp3_file)`    `    return mp3_file``保存上传的文件``   ``def save_uploaded_file(uploaded_file, directory):`    `try:`        `with open(os.path.join(directory, uploaded_file.name), "wb") as f:`            `f.write(uploaded_file.getbuffer())`        `return st.success(f"已保存文件:{uploaded_file.name} 到 {directory}")`    `except Exception as e:`        `return st.error(f"保存文件出错:{e}")``创建用于保存上传文件的目录``   ``upload_dir = "uploaded_files"``os.makedirs(upload_dir, exist_ok=True)``设置 LLM``   ``llm = ChatGroq(model_name="llama3-70b-8192",`    `temperature=0.1,`    `max_tokens=1000,``)``设置嵌入模型``   ``model_name ="BAAI/bge-small-en-v1.5"``model_kwargs ={"device":"cpu"}``encode_kwargs ={"normalize_embeddings":False}``embeddings = HuggingFaceBgeEmbeddings(model_name=model_name,`                                   `model_kwargs=model_kwargs,`                                   `encode_kwargs=encode_kwargs)``设置文本分割器``   ``def text_splitter():`  `text_splitter = RecursiveCharacterTextSplitter(`      `chunk_size=512,`      `chunk_overlap=20,`      `length_function=len,`  `)`  `return text_splitter``设置 RetrievalQA``   ``def answer_question(question,vectorstore):`  `retriever = vectorstore.as_retriever(search_kwargs={"k": 5})`  `qa = RetrievalQA.from_chain_type(llm=llm,`                                   `chain_type="stuff",`                                   `retriever=retriever,`                                   `return_source_documents=True)`  `result = qa.invoke({"query": question})`  `return result['result']``初始化 Groq 客户端``   ``groq_client = Groq()``指定音频文件的路径``   ``filename = "recorded_audio.wav"``转录音频的辅助函数``   ``def transcribe_audio(filename):`  `# 打开音频文件`  `with open(filename, "rb") as file:`      `# 创建音频文件的转录`      `transcription = groq_client.audio.transcriptions.create(`        `file=(filename, file.read()), # 必需的音频文件`        `model="distil-whisper-large-v3-en", # 必需的用于转录的模型`        `prompt="指定上下文或拼写",  # 可选`        `response_format="json",  # 可选`        `language="en",  # 可选`        `temperature=0.0  # 可选`      `)`      `# 打印转录文本`      `print(transcription.text)`  `return transcription.text``初始化 session state 变量``   ``if 'stop' not in st.session_state:`    `st.session_state.stop = False``设置页面配置``   ``st.set_page_config(`    `page_title="音频和书籍应用程序",`    `page_icon="📚",  # 您可以使用表情符号或图片URL`    `layout="wide"``)``创建两列布局``   ``col1, col2 = st.columns([1, 2])  # 调整比例控制列的宽度``在左列显示内容``   ``with col1:`    `st.markdown(`        `"""`        `<h1 style='text-align: center;'>`            `🎧 启用音频的 📚 知识应用程序`        `</h1>`        `<h5 style='text-align: center;'>`            `您的音频问答系统一站式解决方案!`        `</h5>`        `""",`        `unsafe_allow_html=True`    `)`    `st.write("欢迎使用启用音频的 RAG 应用程序!")`    `st.image("audio.jpeg", caption="音频驱动的 RAG", output_format="auto")`    `    if st.button("停止进程"):`        `st.session_state.stop = True  # 设置停止标志为 True``   `    `if st.session_state.stop:`        `st.write("进程已停止。您可以刷新页面重新开始。")``在右列显示 PDF 上传和阅读器``   ``with col2:`    `st.title("PDF 上传和阅读器")`    `uploaded_file = st.file_uploader("选择一个 PDF 文件", type="pdf")`    `    persist_directory_path = "chromanew"`    `if uploaded_file is not None:`        `save_uploaded_file(uploaded_file, upload_dir)`        `file_name = uploaded_file.name`        `loader = PyPDFLoader(f"uploaded_files/{file_name}")`        `pages = loader.load_and_split(text_splitter())`        `persist_directory = persist_directory_path + "_" + file_name.split(".")[0]`        `if os.path.exists(persist_directory):`            `client = chromadb.PersistentClient(path=persist_directory, settings=chroma_setting)`            `vectorstore = Chroma(embedding_function=embeddings,`                                 `client=client,`                                 `persist_directory=persist_directory,`                                 `collection_name=file_name.split(".")[0],`                                 `client_settings=chroma_setting,`                                `)`            `print(f"向量存储中加载的文档数量:{len(vectorstore.get()['documents'])}")`        `else:`            `client = chromadb.PersistentClient(path=persist_directory, settings=chroma_setting)`            `vectorstore = Chroma(embedding_function=embeddings,`                                 `client=client,`                                 `persist_directory=persist_directory,`                                 `collection_name=file_name.split(".")[0],`                                 `client_settings=chroma_setting`                                `)`            `MAX_BATCH_SIZE = 100`            `for i in range(0, len(pages), MAX_BATCH_SIZE):`                `i_end = min(len(pages), i+MAX_BATCH_SIZE)`                `batch = pages[i:i_end]`                `vectorstore.add_documents(batch)`            `print(f"向量存储中加载的文档数量:{len(vectorstore.get()['documents'])}")``创建一个按钮来启动进程``   ``if 'start_process' not in st.session_state:`    `st.session_state.start_process = False``   ``if st.button("启动进程"):`    `st.session_state.start_process = True``   ``if st.session_state.start_process:`    `options = os.listdir("uploaded_files")`    `none_list = ["none"]`    `options += none_list`    `selected_option = st.selectbox("选择一个选项:", options)`    `file_name = newest("uploaded_files") if selected_option == "none" else selected_option`    `st.write(f"您选择了:{selected_option}")`    `st.title("音频录制 - 根据所选选项提问")``   `    `with st.spinner("正在进行音频录制..."):`        `audio = mic_recorder(`            `start_prompt="开始录制",`            `stop_prompt="停止录制",`            `just_once=False,`            `key='recorder'`        `)`        `if audio:`            `st.audio(audio['bytes'], format='audio/wav')`            `with open("recorded_audio.wav", "wb") as f:`                `f.write(audio['bytes'])`            `st.success("音频录制完成!")`        `    with st.spinner("正在进行音频转录..."):`        `text = transcribe_audio(filename)`        `transcription = text`        `st.markdown(text)`    `    if "chat_history" not in st.session_state:`        `st.session_state.chat_history = []`    `    for i, chat in enumerate(st.session_state.chat_history):`        `message(chat["question"], is_user=True, key=f"question_{i}")`        `message(chat["response"], is_user=False, key=f"response_{i}")`    `    if transcription:`        `with st.spinner("正在生成回应..."):`            `persist_directory = persist_directory_path + "_" + file_name.split(".")[0]`            `client = chromadb.PersistentClient(path=persist_directory, settings=chroma_setting)`            `vectorstore = Chroma(embedding_function=embeddings,`                                `client=client,`                                `persist_directory=persist_directory,`                                `collection_name=file_name.split(".")[0],`                                `client_settings=chroma_setting`                                `)`            `response = answer_question(transcription, vectorstore)`            `st.success("回应已生成")`        `        aud_file = text_to_audio(response)`        `st.session_state.chat_history.append({"question": transcription, "response": response})`        `message(transcription, is_user=True)`        `message(response, is_user=False)`        `        st.title("音频播放")`        `st.audio(aud_file, format='audio/wav', start_time=0)

运行 Streamlit 应用程序

streamlit run audio_rag.py

应用程序处理快照

1.浏览并上传 PDF 文件

2.现在向量存储已经加载,点击“启动进程”按钮。

3.开始录制您的问题。一旦问题录制完成,RAG 过程将被触发。应用程序屏幕上会显示相应的回答以及对应的音频。

4.如果您想在已上传的文档上进行问答,请选择知识来源选择框中的选项。

5.上传另一个文档。如果您想在当前上传的文档中进行问答,请选择“无”选项。

6.按下停止按钮以停止进程。


7.刷新屏幕以重新开始。

结论

在本文中,我们探讨了使用Python开发音频驱动的问答系统(Audio RAG)。我介绍了其中的关键步骤,包括录制音频、将语音转换为文本以及使用RAG模型进行问答。通过结合这些技术,我们可以创建一个强大的系统,使用户能够使用语音命令与知识库进行交互。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>好的,用户之前询问了如何设计一个面向党支部书记的虚拟形象,并提到了功能需求和技术平台的选择。现在用户问是否可以使用深度求索(DeepSeek)来实现上述方案。我需要先了解DeepSeek的能力和适用场景,然后分析之前的方案中哪些部分可以用DeepSeek替代或补充。 首先,回顾之前的回答,推荐了国内合规平台如百度UNIT、阿里云和腾讯云,以及开源方案如Rasa和GPT。用户现在想知道是否可以用DeepSeek,这可能是因为他们可能对DeepSeek比较熟悉,或者听说其性能不错。 接下来,我需要确认DeepSeek是什么。根据知识库信息,DeepSeek是深度求索公司开发的AI模型,包括对话模型和MoE模型,支持长文本、代码生成等,且有开源版本如DeepSeek-R1和DeepSeek-V2。他们也有合规性,适合国内使用,这可能符合用户对政治正确和部署环境的需求。 然后,需要分析用户需求的关键点:党务问答、文件检索、任务提醒、敏感词过滤、多模态交互。其中,DeepSeek的对话模型可能在问答和意图识别上有优势,特别是处理复杂党务问题。知识库构建可能需要结合RAG技术,而DeepSeek的长文本处理能力有助于解析政策文件。合规性方面,用户需要确保回答符合党内规定,可能需要在微调时加入合规数据,或者设置严格的后处理过滤。 虚拟形象部分,DeepSeek本身可能不直接支持,但可以结合其他工具如Unity或已有的虚拟形象平台,通过API集成。此外,部署方式上,DeepSeek提供公有云API和私有化部署,适合用户对安全性的要求。 需要考虑用户可能的隐藏需求,比如部署成本、技术难度、维护成本。如果用户团队有AI开发经验,使用开源模型如DeepSeek-R1进行微调可能更灵活;如果希望快速上线,公有云API更合适。同时,用户可能关注数据安全,私有化部署会是重点。 最后,要指出可能的局限性,比如多模态支持需要其他工具,以及需要人工审核确保合规。给出替代方案,比如结合百度的UNIT处理部分功能,用DeepSeek处理复杂问答,这样互补使用。 总结,回答需要分点说明DeepSeek适用的部分,如何实现,注意事项,以及与其他工具的结合,确保用户全面了解可行性和实施路径。</think>是的,深度求索(DeepSeek)的模型和技术可以支持这一场景的实现,但需要结合具体需求和场景进行针对性开发。以下是基于DeepSeek的实现方案分析: --- ### **一、DeepSeek的核心能力适配性** DeepSeek的模型(如**DeepSeek-R1、DeepSeek-V2**)在以下方向与党务助手需求高度匹配: 1. **长文本理解** - 擅长解析政策文件(如《党章》全文、党支部工作条例等长文本),提取结构化信息。 - 示例:从10万字文件中自动生成“党员发展流程图”或“民主评议标准问答”。 2. **复杂意图识别** - 支持多轮对话和模糊问题理解。 - 例如用户问:“张三刚从外省转来,下一步怎么办?” → 自动关联“党员组织关系转接流程”。 3. **合规性控制** - 通过**RLHF(人类反馈强化学习)**和**安全护栏(Safety Guardrails)**,限制生成内容的敏感性。 --- ### **二、具体实现路径** #### **1. 知识库构建** - **数据预处理** 使用DeepSeek-R1的**长文本解析能力**,将《党支部工作手册》等文件切分为QA对或知识图谱。 ```python # 示例:用DeepSeek API提取关键条款 from deepseek_api import process_document doc_text = "《中国共产党支部工作条例》第十条:党支部党员大会是党支部的议事决策机构..." qa_pairs = process_document(doc_text, task="qa_generation") # 输出: [{"question":"党支部党员大会的职能是什么?", "answer":"议事决策机构..."}] ``` #### **2. 对话系统开发** - **意图分类与实体识别** 利用DeepSeek的**微调接口**训练专用模型: ```python # 微调数据示例(JSON格式) { "query": "如何计算党费?", "intent": "党费计算", "entities": {"党员类型": "在职职工"} } ``` - **合规性校验** 在API调用层添加**政治安全过滤器**: ```python response = deepseek.generate(prompt=user_query) if check_political_safety(response): # 自定义安全校验函数 return response else: return "该问题需咨询上级党组织。" ``` #### **3. 虚拟形象集成** - **低成本方案** 通过DeepSeek的API获取文本回复,驱动第三方虚拟形象平台(如腾讯智影、百度数字人): ```python # 伪代码示例 text_response = deepseek.generate(user_query) send_to_virtual_avatar(text_response, platform="tencent_zhihui") ``` - **高定制方案** 用Unity/Unreal Engine开发3D形象,通过**语音合成+口型同步**技术实现交互: ```python audio = text_to_speech(text_response, voice="党务播音腔") animate_avatar(audio, lip_sync=True) # 口型同步算法 ``` --- ### **三、与竞品的对比优势** | 功能 | DeepSeek方案 | 百度UNIT/腾讯小微 | |---------------------|---------------------------------------|-----------------------------------| | 复杂政策解析 | ✅ 支持5万字以上长文档分析 | ❌ 通常限制在2000字以内 | | 多轮对话 | ✅ 支持20+轮次上下文记忆 | ✅ 基础支持 | | 私有化部署成本 | ✅ 国产化适配,支持信创环境 | ❌ 部分需额外政务云授权 | | 政治合规性 | ✅ 内置党政领域RLHF数据 | ✅ 需手动配置敏感词库 | --- ### **四、注意事项** 1. **数据安全** - 党务数据必须通过**私有化部署版DeepSeek-Enterprise**处理,避免使用公有云API。 2. **人工审核机制** - 关键问题(如“开除党员流程”)需设置**人工审核兜底**,不可完全依赖AI。 3. **更新维护** - 政策变更时(如二十大后党章修订),需用DeepSeek的**持续学习接口**更新模型: ```python deepseek.finetune(new_data="2024年最新党员管理条例.pdf") ``` --- ### **五、替代方案建议** 如果资源有限,可采用**混合架构**: - **简单问答**:用百度UNIT实现(低成本、快速部署) - **复杂政策分析**:调用DeepSeek API(按需付费) - **虚拟形象**:腾讯智影(现成解决方案) --- 通过以上方案,结合DeepSeek的技术优势,可以构建一个既智能又合规的党务AI助手。如需具体代码示例(如知识库构建的微调代码),可进一步说明需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值