体验了最新的Qwen3之后,端侧之王果然没有让我失望!

一觉醒来,Qwen3 果然如期而至!并且从来不像某CloseAI,雷声大雨点小!

01 Qwen3发布

Qwen3这次推出了两大系列模型,让我眼前一亮:Dense模型(常见的GPT风格)和MoE模型(混合专家模型,效率更高)。

img

旗舰型号Qwen3-235B-A22B(2350亿总参数,220亿激活参数)表现惊艳!在代码、数学、通用能力等测试中,它能与DeepSeek-R1、o1、o3-mini、Grok-3、Gemini-2.5-Pro这些顶尖模型平起平坐,不得不佩服国产大模型的进步速度。

img

小型MoE模型Qwen3-30B-A3B同样实力强劲,激活参数只有Qwen2.5-32B的十分之一,性能却更胜一筹。还得是Qwen,能打hh

更让人惊艳的是,连超小模型Qwen3-4B都能媲美上一代Qwen2.5-72B-Instruct!这意味着在普通电脑上,我们也能获得以前只有云端才有的体验。

img

开源方面,他们这次真是放了大招:两个MoE模型Qwen3-235B-A22B(2350亿总参数,220亿激活参数)和Qwen3-30B-A3B(300亿总参数,30亿激活参数),外加六个Dense模型Qwen3-32B、14B、8B、4B、1.7B、0.6B。这基本上覆盖了从手机到服务器的全部应用场景。

img

从应用角度看,Qwen3提供了全谱系的选择:

  • Qwen3-0.6B:完美适合手机部署
  • Qwen3-4B、8B:适合个人PC使用
  • Qwen3-14B、32B:适合企业本地化部署
  • 更大的模型:适合云端部署使用

最让人振奋的是,所有模型均在Apache 2.0许可下开源,使用协议宽松,商用无压力!这对开发者和创业者来说简直是福音。

02 比Claude还自由的混合推理

Qwen3最大的亮点是它比Claude还灵活自由的混合推理能力。

什么是混合推理?简单来说,就是同时支持两种思考模式:

  1. 像ChatGPT-4一样直接回答
  2. 像DeepSeek-R1一样:先思考,后回答

为什么混合推理如此重要?因为AI研究发现,模型思考得越多,解决问题的能力就越强,就像下图中蓝线展示的那样:

img

但思考多了也有代价:耗时大幅增加!在许多场景下,不思考的表现已经足够好,没必要画蛇添足,直接回答更为高效。

混合推理最早是Claude推出的,但Claude要求用户手动选择模式,体验不够流畅。而Qwen3更进一步,直接支持在提示词中指定是否思考,随心切换,真正做到了用户体验至上!

比如下图,即使在思考模式下,提示词中指定"请不要思考",模型就会立刻切换到直接回答模式,灵活度令人赞叹:

img

当然,通过界面手动调节思考选项也很简单。你还可以精确控制思考的长度,避免模型过度思考浪费时间。默认是拉满的,拉到0就相当于关闭思考功能:

img

03 AI自由新时代

Qwen3发布后,Ollama第一时间支持了本地部署,8B的模型仅需5.2G空间就能运行。这意味着,普通笔记本电脑也能轻松驾驭强大的AI能力,实现随时随地的AI自由!

img

将Qwen3与Cherry Studio搭配使用,体验简直爽歪歪!用8B的模型(qwen3:latest)在本地就能实现以前只有云端模型才能达到的效果,这种自由感真是令人兴奋。

我让本地部署的qwen3:latest写了一篇6000字的科幻小说,质量之高远超同类7B模型,差距不是一点半点:

img

img

想象一下,以后出差遇到网络不稳定的情况,文档校对、格式调整等日常工作都可以交给本地模型来完成,不再受网络限制,工作效率将大大提升!

04 DeepResearch 调研利器

阿里千问的官方网站 https://chat.qwen.ai/ 还上线了一系列宝藏功能,DeepResearch就是其中之一,它彻底改变了我们获取信息的方式:

img

只需选择"深入研究",就能体验阿里版DeepResearch功能。悄咪咪提一嘴,它背后接的搜索引擎内容质量相当高,据说是某歌的搜索能力。

img

令人惊喜的是,今天刚发布的Qwen3,甚至能精准搜索到4月的最新内容!国内秘塔在这方面也做得不错,但有时因内容源限制无法获取某些信息,而Qwen的DeepResearch则完全不存在这个问题:

img

更贴心的是,DeepResearch还能一键生成PDF并下载使用,这种无缝体验让研究和资料收集变得如此轻松:

img

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>好的,我现在要处理用户关于Qwen3微调方法指南的请求。首先,我需要回顾用户之前的对话历史,但看起来这是用户第一次询问这个问题,所以没有之前的交互。用户提到之前的引用是关于Qwen2-7B的微调实战,但需要调整到Qwen3。因此,我需要确保我的回答是基于Qwen3最新信息,同时参考LLaMA-Factory框架的通用步骤。 首先,我需要确认Qwen3Qwen2在微调上的差异。可能的变化包括模型架构的调整、数据集处理的不同或者训练参数的优化。不过,用户提供的引用中提到LLaMA-Factory支持Qwen系列,所以可能步骤类似,但需要明确说明针对Qwen3的具体调整。 接下来,我需要组织回答的结构。用户希望一个逐步的指南,所以应该分步骤说明环境配置、数据准备、参数设置、训练和验证等。每个步骤需要详细但清晰,确保用户能够跟随操作。例如,环境配置可能需要特定的依赖库版本,数据格式可能需要JSON或特定模板。 然后,我需要考虑用户可能遇到的问题,例如硬件要求、数据集格式转换、参数调优等。在回答中提前涵盖这些问题会更有帮助。例如,Qwen3可能需要更高的显存,或者使用不同的tokenizer设置。 同时,用户要求生成相关问题,我需要根据内容提出相关的扩展问题,比如性能优化、多任务微调、量化部署等,这些都能帮助用户进一步探索。 最后,要确保所有技术细节准确,比如正确的代码示例、正确的命令行参数,以及引用正确的资源,如Hugging Face模型库和LLaMA-Factory的GitHub仓库。同时,注意使用中文,并遵循LaTeX格式的要求,比如数学公式用$...$包裹,独立公式用$$...$$。 总结步骤: 1. 环境配置:安装LLaMA-Factory和依赖,确认PyTorch版本和CUDA兼容性。 2. 数据准备:提供数据集格式示例,说明如何构造符合Qwen3输入格式的数据。 3. 参数设置:解释关键参数,如学习率、批大小、LoRA配置,可能需要调整的地方。 4. 启动训练:给出具体的训练命令,包括模型路径、数据路径和输出目录。 5. 模型验证:使用推理脚本测试微调后的模型,并提醒可能需要的评估指标。 6. 高级技巧:提及全参数微调、多GPU训练和量化部署,扩展用户的后续操作可能性。 在撰写过程中,需要确保每个部分清晰,代码示例正确,并且参数设置针对Qwen3优化。同时,检查是否有遗漏的步骤,比如模型导出或部署,这些可能也是用户关心的问题。最后,生成的相关问题要覆盖微调的不同方面,帮助用户深入探索。</think>以下是根据最新实践整理的Qwen3微调方法指南,结合LLaMA-Factory框架特点与Qwen3模型特性编写: ### 一、环境配置 1. 基础环境要求 - Python≥3.8 - PyTorch≥2.0.1 - CUDA≥11.7 ```bash pip install llama-factory pip install transformers>=4.40.0 ``` 2. Qwen3专用依赖 ```bash pip install flash-attn --no-build-isolation # 提升训练效率 pip install tiktoken # Qwen3专用tokenizer ``` ### 二、数据准备 1. 标准数据格式(JSONL) ```json {"instruction":"写一首春天的诗","input":"","output":"春风拂面柳丝长..."} {"instruction":"解释量子计算","input":"量子比特","output":"量子比特是..."} ``` 2. 对话格式(支持Qwen3特殊模板) ```python def format_prompt(message): return f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n" ``` ### 三、参数配置 关键参数示例(configs/ qwen3.json): ```json { "model_name_or_path": "Qwen/Qwen3-7B", "lora_r": 8, // LoRA秩 "per_device_train_batch_size": 4, "gradient_accumulation_steps": 8, "learning_rate": 1e-5, "num_train_epochs": 3, "fp16": true, // 推荐A100使用bf16 "logging_steps": 50 } ``` ### 四、启动训练 ```bash CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ --stage sft \ --model_name_or_path Qwen/Qwen3-7B \ --dataset_dir data \ --template qwen \ --output_dir outputs/qwen3-7b-sft \ --overwrite_cache \ --use_unsloth \ # 加速训练 --flash_attn # 启用FlashAttention ``` ### 五、模型验证 ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("outputs/qwen3-7b-sft") tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-7B") inputs = tokenizer("<|im_start|>user\n写邮件请假<|im_end|>\n<|im_start|>assistant\n", return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=200) print(tokenizer.decode(outputs[0])) ``` ### 六、高级技巧 1. **全参数微调**:设置`--lora_target_modules "ALL"`启用全参数训练 2. **多GPU训练**:添加`--ddp_find_unused_parameters false`参数 3. **量化部署**:使用`--quantization_bit 4`进行4bit量化导出[^1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值