一觉醒来,Qwen3 果然如期而至!并且从来不像某CloseAI,雷声大雨点小!
01 Qwen3发布
Qwen3这次推出了两大系列模型,让我眼前一亮:Dense模型(常见的GPT风格)和MoE模型(混合专家模型,效率更高)。
旗舰型号Qwen3-235B-A22B(2350亿总参数,220亿激活参数)表现惊艳!在代码、数学、通用能力等测试中,它能与DeepSeek-R1、o1、o3-mini、Grok-3、Gemini-2.5-Pro这些顶尖模型平起平坐,不得不佩服国产大模型的进步速度。
小型MoE模型Qwen3-30B-A3B同样实力强劲,激活参数只有Qwen2.5-32B的十分之一,性能却更胜一筹。还得是Qwen,能打hh
更让人惊艳的是,连超小模型Qwen3-4B都能媲美上一代Qwen2.5-72B-Instruct!这意味着在普通电脑上,我们也能获得以前只有云端才有的体验。
开源方面,他们这次真是放了大招:两个MoE模型Qwen3-235B-A22B(2350亿总参数,220亿激活参数)和Qwen3-30B-A3B(300亿总参数,30亿激活参数),外加六个Dense模型Qwen3-32B、14B、8B、4B、1.7B、0.6B。这基本上覆盖了从手机到服务器的全部应用场景。
从应用角度看,Qwen3提供了全谱系的选择:
- Qwen3-0.6B:完美适合手机部署
- Qwen3-4B、8B:适合个人PC使用
- Qwen3-14B、32B:适合企业本地化部署
- 更大的模型:适合云端部署使用
最让人振奋的是,所有模型均在Apache 2.0许可下开源,使用协议宽松,商用无压力!这对开发者和创业者来说简直是福音。
02 比Claude还自由的混合推理
Qwen3最大的亮点是它比Claude还灵活自由的混合推理能力。
什么是混合推理?简单来说,就是同时支持两种思考模式:
- 像ChatGPT-4一样直接回答
- 像DeepSeek-R1一样:先思考,后回答
为什么混合推理如此重要?因为AI研究发现,模型思考得越多,解决问题的能力就越强,就像下图中蓝线展示的那样:
但思考多了也有代价:耗时大幅增加!在许多场景下,不思考的表现已经足够好,没必要画蛇添足,直接回答更为高效。
混合推理最早是Claude推出的,但Claude要求用户手动选择模式,体验不够流畅。而Qwen3更进一步,直接支持在提示词中指定是否思考,随心切换,真正做到了用户体验至上!
比如下图,即使在思考模式下,提示词中指定"请不要思考",模型就会立刻切换到直接回答模式,灵活度令人赞叹:
当然,通过界面手动调节思考选项也很简单。你还可以精确控制思考的长度,避免模型过度思考浪费时间。默认是拉满的,拉到0就相当于关闭思考功能:
03 AI自由新时代
Qwen3发布后,Ollama第一时间支持了本地部署,8B的模型仅需5.2G空间就能运行。这意味着,普通笔记本电脑也能轻松驾驭强大的AI能力,实现随时随地的AI自由!
将Qwen3与Cherry Studio搭配使用,体验简直爽歪歪!用8B的模型(qwen3:latest)在本地就能实现以前只有云端模型才能达到的效果,这种自由感真是令人兴奋。
我让本地部署的qwen3:latest写了一篇6000字的科幻小说,质量之高远超同类7B模型,差距不是一点半点:
想象一下,以后出差遇到网络不稳定的情况,文档校对、格式调整等日常工作都可以交给本地模型来完成,不再受网络限制,工作效率将大大提升!
04 DeepResearch 调研利器
阿里千问的官方网站 https://chat.qwen.ai/ 还上线了一系列宝藏功能,DeepResearch就是其中之一,它彻底改变了我们获取信息的方式:
只需选择"深入研究",就能体验阿里版DeepResearch功能。悄咪咪提一嘴,它背后接的搜索引擎内容质量相当高,据说是某歌的搜索能力。
令人惊喜的是,今天刚发布的Qwen3,甚至能精准搜索到4月的最新内容!国内秘塔在这方面也做得不错,但有时因内容源限制无法获取某些信息,而Qwen的DeepResearch则完全不存在这个问题:
更贴心的是,DeepResearch还能一键生成PDF并下载使用,这种无缝体验让研究和资料收集变得如此轻松:
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。