使用Ollama部署大模型的时候,有几个注意事项要注意。Ollama默认的上下文窗口只有2K,多张显卡可能资源分配不均等问题,计算速度不够快。
我们先看一下Ollama可配置环境变量:
OLLAMA_DEBUG: 显示额外的调试信息(例如:OLLAMA_DEBUG=1)。
OLLAMA_HOST: Ollama 服务器的 IP 地址(默认值:127.0.0.1:11434)。
OLLAMA_KEEP_ALIVE: 模型在内存中保持加载的时长(默认值:“5m”)。
OLLAMA_MAX_LOADED_MODELS: 每个 GPU 上最大加载模型数量。
OLLAMA_MAX_QUEUE: 请求队列的最大长度。
OLLAMA_MODELS: 模型目录的路径。
OLLAMA_NUM_PARALLEL: 最大并行请求数。
OLLAMA_NOPRUNE: 启动时不修剪模型 blob。
OLLAMA_ORIGINS: 允许的源列表,使用逗号分隔。
OLLAMA_SCHED_SPREAD: 始终跨所有 GPU 调度模型。
OLLAMA_TMPDIR: 临时文件的位置。
OLLAMA_FLASH_ATTENTION: 启用 Flash Attention。
OLLAMA_LLM_LIBRARY: 设置 LLM 库以绕过自动检测。
1. 显卡资源使用不均横
设置环境变量OLLAMA_SCHED_SPREAD为1即可。
2. 加速计算
FlashAttention 是一种优化的注意力机制,用于加速深度学习模型中常见的自注意力计算,尤其是在Transformer架构中。它通过改进内存访问模式和计算策略,显著提高了计算效率和内存使用率。
我们可以通过设置环境变量OLLAMA_FLASH_ATTENTION为1,开启改选项。
增加上下文窗口
假设你从Ollama上拉取了大模型,其默认的窗口大小只有2048。我们可以通过如下方法,提高上下文窗口。
ollama show --modelfile qwen2:72b > Modelfile
我们看一下生成的Modelfile。
# Modelfile generated by "ollama show" # To build a new Modelfile based on this, replace FROM with: # FROM qwen2:72b FROM C:\Users\Administrator\.ollama\models\blobs\sha256-f6ac28d6f58ae1522734d1df834e6166e0813bb1919e86aafb4c0551eb4ce2bb TEMPLATE "{{ if .System }}<|im_start|>system {{ .System }}<|im_end|> {{ end }}{{ if .Prompt }}<|im_start|>user {{ .Prompt }}<|im_end|> {{ end }}<|im_start|>assistant {{ .Response }}<|im_end|> " PARAMETER stop <|im_start|> PARAMETER stop <|im_end|> LICENSE """Tongyi Qianwen LICENSE AGREEMENT Tongyi Qianwen Release Date: August 3, 2023 .... """
然后在PARAMETER处增加如下配置,32768就是上下文窗口大小,设置成你想要的即可。
注意增加上下文窗口可能增加显存的使用,谨慎增加。
PARAMETER num_ctx 32768
然后创建新模型即可
ollama create qwen2:72b-32k -f Modelfile
接下来,你就可以使用运行具有更高上下文的模型了。
ollama run qwen2:72b-32k
在使用OpenAI接口调用时候,模型的名称也要改成qwen2:72b-32k
。
支持的并发请求数量
可以考虑配置OLLAMA_NUM_PARALLEL,默认一般是4或者1。它会相应的增加上下文,比如一个请求2048 Tokens。如果是4个并行,那么就会消耗4*2048的上下文窗口。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。