行业落地分享:阿里知识图谱召回与实践

unsetunset业务背景unsetunset

在当今这个信息爆炸的时代,如何从海量数据中挖掘出有价值的信息,已成为各行各业面临的共同挑战。如果我们能够将企业间的交易、投融资、采购等复杂关系,以及新客户、股东、高管等关键信息,通过图的形式直观展现出来,那将是多么震撼的一件事。这就是图游走召回技术的魅力所在。它能够帮助我们发现潜在的商业机会,获取关键线索,甚至揭示母子公司、家族关系、招投标信息等深层次的商业联系。

在构建业务背景时,我们可以利用知识图谱的强大语义表达能力、存储能力和推理能力,深入挖掘企业在生产经营过程中与其他实体之间的各类关联关系。通过知识图谱的构建和应用,我们可以更全面地理解企业在不同业务领域的关联关系,为企业的风险管理、决策支持和市场策略提供有力的数据支撑。

通过知识图谱,我们可以分析历史投标数据,识别投标过程中的关键参与者、投标历史、中标率等信息,为相关机构提供推荐标书服务,从而提高中标机会。处理多个输入以寻找共同点时,单纯依赖文本相似性可能不足以反映所有相关因素。知识图谱能够从关联度的角度出发,通过图的方式解决这一问题,提供更全面的视角。

unsetunset图游走召回unsetunset

Pixie是一种基于图的实时推荐系统,最初由Pinterest开发并用于处理其庞大的用户和内容库。该系统能够实时地从数十亿个可能的pins中为用户推荐最相关的pins。

  • 有偏随机游走:根据用户的个性化特征和偏好,调整游走过程中的节点选择,以实现更精准的个性化推荐。

  • 多查询Pin及其权重:算法允许对不同的查询pins分配不同的权重,这有助于捕捉用户过去的行为和偏好。

  • 多命中增强器:增强从多个查询pins得到的候选pins的分数,特别是那些被多次访问的pins。

  • 早停策略:为了减少计算时间和资源消耗,算法会在推荐候选项稳定后提前终止游走过程。

图游走召回技术的核心在于其能够通过图谱的方式,探索和发现不同实体间的关联。在案例中,技术团队设置了权重,将省份、招标行业、标的类型等属性作为图谱的节点属性,并根据query组中属性值的分布来设置权重。这种方法使得召回结果更加精准,更贴近实际业务需求。

  • 图游走召回技术不能有超级节点类型,如果有超级节点存在,则需要将其转换为属性表达。这是因为超级节点可能会对游走算法产生不良影响,如影响推荐的多样性或造成算法偏向特定节点。

  • 图游走召回技术只能推荐出有关联的信息,主要挖掘同质性,而难以挖掘结构性相似。这意味着算法可能无法发现和推荐那些在结构上与查询项相似但不直接相连的节点。

unsetunset图表示召回unsetunset

图表示学习是一种将图数据转化成低维稠密向量化表示的技术,其核心目标是确保图数据的性质能够在向量空间中得到有效表达。学习得到的图表示可以应用于多种任务,包括节点分类、链接预测、图分类、推荐系统等。

图游走方法如Metapath2vec通过在图中进行随机游走来生成节点序列,然后利用类似Word2Vec的模型来学习节点的向量表示 。而图神经网络技术,如GraphSAGE、HGT、HAN等,通过聚合邻居节点信息来更新节点表示,捕捉节点的局部和全局结构特征 。

在实际应用中通过配置化的方式使用不同的采样方法,以适应不同的算法实现,并通过Quiver优化图特征聚合过程,加速训练。此外,通过自定义loss和模型配置,可以针对特定业务需求进行高性能训练。

unsetunset图召回引擎unsetunset

召回引擎能够处理顶点不在已有图中的情况,同时支持query中包含顶点及其一阶邻居的查询。在基于游走召回时,可以通过以query中的一阶邻居作为起始顶点进行游走来实现召回。

在构建图召回引擎时,需要通过描述文件自动构建支持图查询和图表示学习的图,同时支持多种数据源类型的自动导入。此外,还需要进行图采样、模型配置,并行训练,以及向量数据的导出。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值