与Claude和GPT模型相比,DeepSeek模型过去一度被开发者社区忽视。不过,过去几个月以来,DeepSeek的发展势头非常迅猛。
随着DeepSeek 2.5发布(该版本整合了DeepSeek-V2-Chat和DeepSeek-Coder-V2-Instruct的功能),该模型热度达到顶峰。DeepSeek-V2.5经过微调后更符合人类偏好,并在写作和指令执行等多个方面进行了优化。
如果你真的体验过DeepSeek 2.5,你就会惊叹于它不输于顶尖闭源模型Claude 3.5 Sonnet于GPT 4o的能力,以及不可思议的价格,DeepSeek 2.5比Claude 3.5 Sonnet低21倍,比GPT 4o低17倍。基本上,如果你想用大模型编写代码,考虑到性价比,DeepSeek 2.5无疑是最优选择。
本文讨论了DeepSeek 2.5的所有功能,并与Claude 3.5 Sonnet、GPT 4o进行了对比,其中揭示了模型之间的边际差异。
DeepSeek 2.5概述
DeepSeek 2.5是上一代模型的集大成者,集成了DeepSeek-V2-Chat和DeepSeek-Coder-V2-Instruct的功能。该版本不仅增强了通用语言能力,还提升了编码功能,非常适合各种应用场景。该模型旨在更好地符合人类偏好,并在多个领域进行了优化,包括写作质量和指令遵循。下图所示的基准表阐明了这一点:
DeepSeek V2.5的主要特性
-
模型集成:结合了聊天模型和编码模型的功能。
-
性能指标:在多个基准测试(如AlpacaEval和HumanEval)中超越了前代模型,展示了在指令遵循和代码生成方面的提升。
-
上下文长度:支持最长128K词元的上下文长度。
如何使用DeepSeek 2.5
DeepSeek 2.5可通过网页平台和API访问。用户可以将其功能无缝集成到自身系统中。你可以创建账户,获取API密钥以访问该模型的所有功能。
价格对比:DeepSeek 2.5 vs Claude 3.5 Sonnet vs GPT 4o
将DeepSeek 2.5与其他模型(如GPT-4和Claude 3.5 Sonnet)进行比较,可以明显看出,无论GPT还是Claude,其成本效益都无法与DeepSeek相媲美。以下是各模型使用成本的定价汇总表:
此表说明,DeepSeek 2.5的定价与GPT-4 mini更接近,但效率方面,其更接近标准版GPT-4。
DeepSeek 2.5在代码生成中的应用
DeepSeek 2.5已与 GPT、Claude 和 Gemini等其他模型在推理、算术、语言和代码生成能力方面进行了评估。Deepseek2.5在根据用户提示生成代码片段这一方面表现出色,展示了高效的编程能力。
下表突出了其性能基准。
DeepSeek 2.5提示词示例
以下是一些用于测试DeepSeek 2.5代码生成能力的提示词示例:
用户反馈
Reddit等平台用户的反馈强调了DeepSeek 2.5相较其他模型的优势。用户指出,与Claude和Sonnet等模型相比,DeepSeek对聊天和编程功能的集成是十分独特的优势。
许多用户赞赏该模型在长时间对话或代码生成任务中记忆上下文的能力,这对于解决复杂的编程挑战至关重要。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。