01.前言
2024年11月6日,国家卫生健康委员会办公厅印发了卫生健康行业人工智能应用场景参考指引的通知,在该文件中将AI在卫生健康行业应用场景分为四大部分的13项。
那么结合国卫办的通知,我想AI应用普及将会是大势所趋。但真正的应用起来,还需要不断地进行尝试,真正地解决医生、患者关心的问题,我想才能得到更快速的推广。
所以我就想就一些具体的应用作一些探讨,从细微处看看AI的发展趋势。
本文个人就探讨当下医院方面关注比较多,个人也认为具有应用前景的部分应用场景——AI智能预问诊+自动化病历生成功能。
02.何为“AI智能预问诊系统”
在指引文件中,对智能预问诊的定义是:“在医生问诊前,通过图文、语音等人机交互,采集患者临床专科病史信息辅助生成电子病历。”
所以,智能预问诊是指通过最新的人工智能技术,利用自然问答的交互形式(图文、语音、人机协同交互等),采集患者病情的信息,并自动化生成该患者的电子病历。
03.智能预问诊系统的应用价值
在指引文件中,对智能预问诊的应用场景描述是:
”在医生问诊前,利用语音识别、自然语言理解、图像识别、领域知识融合等人工智能技术,通过文字、语音、辅助检查报告图像或报告上传等方式,根据不同临床专科问诊要求,通过人机交互,引导患者完成症状、现病史、既往史、辅助检查结果等临床信息采集。通过智能算法,依据病历的书写要求,自动提取关键信息,生成格式标准、内容准确的病史文书,供医生在书写病历时参考和引用,帮助医生快速了解患者的基本病情,减少电子病历录入的时间,增加与患者交流病情的时间,提高诊疗效率,提升医疗服务质量。”
我们可以理解为,通过这样的形式,帮助医生提前了解患者病情的信息,减少门诊过程中病历输入时间,增加患者病情交流时间,提高诊疗效率和医疗服务的质量。所以如果能做好,对于医生还是患者,意义都是很大的!
04.AI智能预问诊系统功能流程
AI智能预问诊功能的核心:信息采集+自动化病历生成。
AI智能预问诊的典型应用场景及流程如下图所示:
第一步预问诊,分为院外和院内场景
1)院外场景,患者通过医院官方公众号/小程序等完成预约挂号后,同步调用智能预问诊系统,实现病情预问诊。
2)院内场景,首先患者在候诊区可以通过扫码的方式,提前进行病情预问诊;然后患者进入诊区后,通过语音设备实现患者病情自动采集。
第二步,自动化病历生成
系统根据采集到的信息,生成规范化的电子病历文书,实际上系统在完成患者预问诊的同时,就已生成相关病历文档。
第三步,医生使用
1)病情了解,对于院外患者,医生可以通过手机APP提前了解病情信息;2)病历引用,对于已进行预问诊的患者,系统会自动提醒医生,可一键引入已生成的电子病历文档(语音模式则根据诊间语音采集信息自动生成)。
05.AI智能预问诊应用现状及挑战
智能预问诊的技术已经很成熟,该系统的应用完全可以提高医生的工作效率,提高病历书写的规范,应该是很有应用前景的!
不过,根据目前的使用情况,应用挑战还很多,核心的问题还是系统使用率还不高,做了很多工作,最后患者能够实现整个流程,且最终能够被医生引用的病历可能很少。
为什么会出现这样的情况,我想主要有以下一些问题:
1)使用习惯的问题。作为新生事物,都有一个普及与适应的过程;
2)便捷与信息准确的矛盾问题。站在患者的角度,需要回答的问题自然越少越好,但站在医生的立场,当然希望信息越准确越便于诊疗,这期间就会存在矛盾!
3)技术方面的细节问题。不同使用者的个性化问题,不同科室间的差异问题,还有语音采集识别的准确性等等。
总的来讲,这是一个很好的系统,但如何更加便捷,让百姓愿意用,真正达到效果,提高使用率,是目前普遍存在的一个问题,还是需要我们不断地去尝试与和突破,才能达到最初的期望。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。