专为 AI Agent和AI应用构建的开源浏览器自动化 API:steel-browser

项目简介

steel-browser:专为 AI Agent和AI应用构建的开源浏览器自动化 API,构建能像人一样有效地与web交互的AI应用程序

构建实时网络代理和浏览器自动化的一个开源工具:steel-browser,它提供了完整的REST API接口来控制浏览器操作可以基于它构建比如,AI网页助手、数据采集工具、自动化表格工具等,它可以执行打开网页、截图、下载文件等任务 开箱即用,支持无头浏览器,支持Docker,支持反检测 支持基本所有常见的网页操作 支持并发处理,可以处理大规模任务 自动处理异常和恢复

Steel.dev是一个开源浏览器 API,可以轻松构建与网络交互的 AI 应用程序和代理。您无需从头开始构建自动化基础设施,而是可以专注于 AI 应用程序,而 Steel 则负责处理复杂性。

该存储库是 Steel 背后的核心构建块 - 一个可用于生产的容器化浏览器沙箱,您可以将其部署在任何地方。它包括内置的隐形功能、文本到 Markdown 会话管理、用于查看/调试会话的 UI,以及通过 Puppeteer、Playwright 和 Selenium 等标准自动化框架进行的完整浏览器控制。

✨ 亮点

steel-browser提供 REST API 来控制、运行和管理生产就绪的浏览器环境。在底层,它管理浏览器实例、会话和页面,使您能够以编程方式执行复杂的浏览任务,而不会遇到任何麻烦:

  • 完全浏览器控制:使用 Puppeteer 和 CDP 来完全控制 Chrome 实例 - 允许您使用 Puppeteer、Playwright 或 Selenium 进行连接。

  • 会话管理:跨请求维护浏览器状态、cookie 和本地存储

  • 代理支持:内置代理链管理,用于 IP 轮换

  • 扩展支持:加载自定义 Chrome 扩展以增强功能

  • 调试工具:内置请求日志记录和会话记录功能

  • 反检测:包括隐形插件和指纹管理

  • 资源管理:自动清理和浏览器生命周期管理

  • 浏览器工具:公开 API 以快速将页面转换为 Markdown、可读性、屏幕截图或 PDF。

有关详细的 API 文档和示例,请查看我们的API 参考或直接探索 Swagger UI http://0.0.0.0:3000/documentation

入门

最快的入门方法是构建并运行 Docker 映像:

# Clone and build the Docker image``git clone https://github.com/steel-dev/steel-browser``cd steel-browser``docker compose up

或者,如果您安装了 Node.js 和 Chrome,则可以直接运行服务器:

npm run install``npm run dev

这将在端口 3000 上启动 Steel 服务器。

确保您已安装 Chrome 可执行文件并位于以下路径之一:

  • Linux: /usr/bin/google-chrome

  • MacOS: /Applications/Google Chrome.app/Contents/MacOS/Google Chrome

  • Windows:

  • C:\Program Files\Google\Chrome\Application\chrome.exe 或者

  • C:\Program Files (x86)\Google\Chrome\Application\chrome.exe

有关检查位置的更多详细信息,请参阅api/src/utils/browser.ts

用法

Steel 浏览器提供 REST API 来控制由 Puppeteer 提供支持的无头浏览器。在底层,它管理浏览器实例、会话和页面,允许您以编程方式执行复杂的浏览任务。

完整的 REST API 文档可以在 Steel 实例的/documentation中找到(例如, http://0.0.0.0:3000/documentation )。

Steel 提供了三种主要方法让您的代理实现浏览器自动化:

快速操作 API

/scrape/screenshot/pdf端点可让您使用正在运行的 Steel 服务器从任何网页快速提取干净、格式良好的数据。非常适合简单、只读、按需作业:

抓取网页

提取网页的 HTML 内容。

# Example using the Actions API``curl -X POST http://0.0.0.0:3000/v1/scrape \`  `-H "Content-Type: application/json" \`  `-d '{`    `"url": "https://example.com",`    `"waitFor": 1000`  `}'

浏览器会话 API

浏览器会话 API 允许您使用自定义选项或扩展(例如使用自定义代理)重新启动浏览器,并重置浏览器状态。非常适合需要细粒度控制的复杂、有状态的工作流程:

# Launch a new browser session``curl -X POST http://0.0.0.0:3000/v1/sessions \`  `-H "Content-Type: application/json" \`  `-d '{`    `"options": {`      `"proxy": "user:pass@host:port",`      `// Custom launch options`    `}`  `}'

Selenium集成

注意:此集成不支持基于 CDP 的浏览器会话 API 的所有功能。

对于拥有现有 Selenium 工作流程的团队,Steel 浏览器提供了一个直接替代品,可以在保持兼容性的同时添加增强的功能:

# Launch a Selenium session``curl -X POST http://0.0.0.0:3000/v1/selenium/launch \`  `-H "Content-Type: application/json" \`  `-d '{`    `"options": {`      `// Selenium-compatible options`    `}`  `}'

Selenium API 与 Selenium 的 WebDriver 协议完全兼容,因此您可以使用任何现有的 Selenium 客户端连接到 Steel 浏览器。

// Example using the Selenium API``const builder = new Builder()`      `.forBrowser("chrome")`      `.usingServer(`        `` `http://0.0.0.0:3000/selenium` ``      `);``   ``const driver = await builder.build();``   ``console.log("Navigating to Google");``await driver.get("https://www.google.com");``   ``// The rest of your Selenium code here...

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值