小红书&上交多模态大模型新基准,Gemini 1.5 Pro准确率仅48%

多模态大模型理解真实世界的水平到底如何?

有新基准来衡量了。

就在最近,小红书和上海交通大学联合提出WorldSense,一个全新的基准测试,用来评估多模态大模型(MLLMs)的多模态真实场景理解能力。

基于WorldSense,团队对各种先进的MLLMs进行了广泛评估,结果发现:

开源的视频-音频模型在该基准上的准确率仅约25%,几乎等同于随机猜测;即使是表现最好的专有模型 Gemini 1.5 Pro,准确率也只有48%,远不能满足可靠的真实世界应用需求。

下面具体来看。

WorldSense介绍

想象一下,当你开车时,不仅要依靠眼睛观察道路标志、交通信号灯和障碍物,还要用耳朵听其他车辆的喇叭声、后方传来的警笛声,甚至通过手对方向盘的触感、车辆行驶时的震动来做出实时决策,确保安全驾驶。

这就是人类在真实场景中自然的多模态信息整合能力。

而现在的多模态大模型,在处理这些复杂的真实世界场景时,表现究竟如何呢?

WorldSense的诞生,正是为了填补现有评估体系的关键空白。

与以往那些存在诸多局限性的基准测试不同,它具备三大核心亮点,为多模态大模型的评估开辟了新的道路。

全模态协同,深度融合感知

在WorldSense的设计中,音频和视频紧密耦合,每个问题都需要模型充分挖掘音频和视频中的线索,将两者信息有机结合,才能找到正确答案。

比如,在上图第一个例子中,有个人手里拿着水果。如果仅依靠视觉信息,我们可能只能看到他拿着东西这个动作,但很难确定他具体在做什么,是展示水果的颜色、大小,还是在进行其他操作;而仅凭借音频,我们甚至都难以判断他手中拿的是什么水果。

只有将视觉与音频信息协同起来,模型才能准确理解场景,给出正确答案。这种设计严格考验模型同时处理多种感官输入、进行精准理解的能力。

最新的开源视频音频多模态大模型仅仅获得了25%左右的准确率,而表现最好的Gemini 1.5 Pro也只有48%的准确率,并且在缺失一个模态的情况下性能下降约15%左右。

这进一步说明了全模态协同在真实世界感知的重要性和WorldSense中多模态信息的强耦合,也揭示了现有多模态大模型的局限性。

视频与任务多样性,全方位场景覆盖

据介绍,WorldSense涵盖了1662个视听同步视频,系统地分为8个主要领域和67个细粒度子类别,覆盖了丰富的真实世界场景。

同时,它还包含3172个多选问答对,横跨26种不同的认知任务,从基础的物体识别、声音辨别,到复杂的因果推理、抽象概念理解,全方位评估MLLMs的多模态理解能力。

高质量标注,可靠性的基石

为了保证评估的可靠性,所有的问答对都是由80位专家手动标注

而且,标注过程并非一蹴而就,而是经过多轮严格的人工审核,从语言表达的清晰度、逻辑的连贯性,到答案的准确性和唯一性,都进行了反复考量。

不仅如此,还借助自动MLLM验证技术,进一步确保标注质量。

经过这样双重保障的标注过程,确保问题和答案的准确性和高质量。

实验

如前所述,研究团队基于WorldSense对各种先进的MLLMs进行了广泛评估,结果令人深思。

开源的视频 - 音频模型在该基准上的准确率仅约25%,几乎等同于随机猜测;即使是表现最好的专有模型Gemini 1.5 Pro,准确率也只有48%,远不能满足可靠的真实世界应用需求。

这表明当前的模型在理解真实世界场景方面还面临巨大挑战,同时也凸显了全模态协同理解的重要性。

为进一步深入剖析这些模型的性能短板,研究人员开展了细粒度分析,从不同音频类型和任务类别两个关键维度入手,挖掘模型在实际应用中的具体问题。

这一分析为我们深入洞察现有模型的局限性提供了关键视角。

最终结果如下:

1、音频相关任务表现欠佳:模型在音频识别、计数等任务上表现差,显著落后于其他任务类型。这是由于音频信号复杂,现有模型架构和训练方法难以有效解析利用其中的频率、音色等信息。

2、情感相关任务挑战巨大:这类任务需整合面部表情、语气语调、语音内容等多模态线索,模型表现较差,暗示其训练数据缺乏情感样本,且架构算法难以融合多模态信息进行判断。

3、不同音频类型下表现各异:以Gemini 1.5 Pro为例,其处理事件相关问题的准确率低于语音或音乐任务,其他模型也存在类似情况。这凸显现有模型缺乏对各种音频类型通用、稳定的理解能力。

鉴于上述评估中揭示的多模态大模型(MLLMs)在性能上的巨大差距,研究团队深入探究了提升MLLMs性能的潜在方法,具体涵盖视觉信息、音频信息以及视频帧等方面的研究。

视觉信息的影响

研究人员通过设置不同的输入配置,探究视觉信息对模型性能的影响,这些配置包括仅音频输入、音频结合视频字幕输入以及音频结合视频帧输入。

从实验结果来看,视觉信息通常能提升模型性能。以Gemini 1.5 Pro为例,其仅音频输入时准确率为34.6%,而添加视频帧输入后,准确率提升至48.0%。

然而,不同模型受视觉信息的影响存在差异。像UnifiedIO2系列模型,在结合视频字幕输入时,性能提升效果并不稳定,甚至出现了性能下降的情况。

这一现象表明,一方面,视觉信息若能被模型恰当整合,对增强多模态理解至关重要;另一方面,当前模型在有效利用视觉信息方面的能力仍然有限,可能是因为模型在处理视觉特征与其他模态信息融合时存在困难,或者是在提取视觉关键信息上还不够高效。

音频信息的作用

在音频信息的研究上,团队设置了三种输入配置进行实验,分别是仅视频输入、视频结合字幕输入以及视频结合原始音频输入。

实验结果呈现出有趣的规律

对于Gemini 1.5 Pro和OneLLM等模型,添加字幕能提高准确率,而添加原始音频后,准确率提升更为显著,这充分说明字幕和原始音频中的声学特征(如语气、情感、环境声音等)都为多模态理解提供了有价值的信息,且原始音频包含了字幕无法捕捉的重要线索,对多模态理解意义重大。

但不同模型对音频信息的处理能力也有所不同。UnifiedIO2 在整合字幕或音频时,性能出现了下降,尤其是字幕输入导致准确率明显降低,这反映出该模型在多模态处理方面存在困难,可能无法有效融合音频和视觉等多模态信息。

而Video - LLaMA2虽然在添加两种模态信息时性能都有所提升,但对字幕的依赖更强,在处理原始音频时表现相对较弱,这表明它更擅长处理文本形式的音频信息,而在解析复杂声学信息上能力不足。

此外,研究人员还对仅视频输入的 MLLMs 提供转录字幕进行评估,发现几乎所有模型在添加字幕后性能都显著提升,不过在音乐相关问题上,由于字幕无法有效捕捉旋律、节奏和和声等固有声学特征,性能提升并不明显。

这进一步证明了原始音频在多模态理解中的独特价值,同时也表明当前模型在整合声学和文本信息以实现全面场景理解方面存在较大的提升空间。

视频帧采样密度的效果

研究团队还研究了视频帧的时间采样密度对模型性能的影响,通过改变仅视频输入的 MLLMs 的输入帧数来进行实验。

结果显示,大多数模型在增加帧密度后,性能有显著提升

这是因为更高的帧密度能够让模型更好地捕捉视频中细粒度的时间动态变化和微妙的视觉改变,从而提升对视频内容的理解。

例如,在一些包含快速动作或微小细节变化的视频中,增加帧密度能让模型获取更多关键信息,进而做出更准确的判断。但也有例外,如 LLaMA - 3.2 在增加帧密度时,性能并未提升。

这可能与该模型自身的架构特点或训练方式有关,导致它无法有效利用增加的帧信息,这也为后续研究如何优化模型以更好地利用视频帧信息提供了思考方向。

小结一下,通过对视觉信息、音频信息以及视频帧采样密度的研究,为提升MLLMs在真实世界场景中的理解能力提供了重要的参考方向。

未来的研究可以基于这些发现,进一步优化模型架构和训练方法,以增强模型对多模态信息的处理能力,缩小与人类真实世界理解能力之间的差距。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值