1. 引言
随着人工智能技术的飞速发展,大语言模型(LLM)在自然语言处理领域展现出了强大的能力。Ollama作为一个本地LLM运行框架,支持多种开源模型如Qwen2.5、DeepSeek-R1等。为了方便.NET开发者使用,OllamaSharp应运而生,它是一个与Ollama API交互的C#库,能够轻松将AI模型集成到.NET应用程序中。
2. OllamaSharp核心功能
OllamaSharp
库的核心功能主要包括:
-
文本生成:使用 Ollama 提供的大模型生成自然语言文本。
-
模型交互:与 AI 模型进行对话式的交互,支持多轮对话。
-
输入处理:处理用户输入并向 Ollama 发送请求,获取模型响应。
-
API 错误处理:帮助处理与 API 交互时可能出现的错误或异常。
3. 使用场景
OllamaSharp库适用于多种应用场景,包括但不限于:
1. 智能客服:为客服系统提供自然语言处理能力,自动回答用户问题,提升客服效率。
2. 对话机器人:实现聊天机器人功能,支持多轮对话,增强用户互动体验。
3. 文本生成:根据用户输入自动生成文章、摘要、评论等内容,提高内容生产效率。
4. 知识库查询:将模型与现有知识库对接,提供智能问答服务,助力知识检索。
4.使用案例详解
以下是一个简单的OllamaSharp使用案例:
1.安装 OllamaSharp
首先,新增Winform项目 OllamaSharpApp,
在项目中引用 OllamaSharp
:
Install-Package OllamaSharp
然后,确保 Ollama 已经在本地运行。如果没有安装,可以在 Ollama 官网[1] 下载并启动。
默认情况下,Ollama 运行在
http://localhost:11434
。
2. 创建Form页面
在OllamaSharpApp项目中,创建一个显示和发送数据的页面
编码实现,通过 OllamaApiClient
创建一个客户端来访问 Ollama API。
using OllamaSharp; namespace OllamaSharpApp { public partial class Form1 : Form { OllamaApiClient client; public Form1() { InitializeComponent(); } private async void btnSend_Click(object sender, EventArgs e) { bool bThink = false; await foreach (var response in client.GenerateAsync(richTextBox2.Text)) { if (response == null) return; string text = response.Response; if (text.Contains("<think>")) { bThink = true; continue; } if (text.Contains("</think>")) { bThink = false; continue; } if (bThink == false) { richTextBox1.AppendText(text); } } } private void Form1_Load(object sender, EventArgs e) { client = new OllamaApiClient(new Uri("http://localhost:11434")); client.SelectedModel = "deepseek-r1:7b"; // 选择默认模型 richTextBox2.Text = "介绍一下你自己"; } } }
运行查看
3. 进行聊天交互
使用 GenerateAsync
方法可以与 Ollama 进行聊天。
await foreach (var response in client.GenerateAsync("介绍一下人工智能")) { Console.Write(response.Response); }
4. 管理模型
4.1 下载模型
如果本地没有某个模型,你可以使用 PullAsync
下载:
await client.PullAsync("deepseek-r1:7b"); Console.WriteLine("模型下载完成");
4.2 获取可用模型列表
var models = await client.ListLocalModelsAsync(); foreach (var model in models) { Console.WriteLine(model.Name); }
输出
qwen2.5:latest deepseek-r1:7b deepseek-r1:1.5b deepseek-r1:latest qwen2:latest qwen2:7b llama3:8b llama3:latest qwen:latest
4.3 删除模型
await client.DeleteAsync("deepseek-r1:7b"); Console.WriteLine("模型已删除");
5. 结论
OllamaSharp作为一款与Ollama API交互的C#库,为.NET开发者提供了便捷的AI模型集成方案。通过OllamaSharp,开发者可以轻松实现聊天、嵌入、管理模型等功能,将Ollama的强大能力融入到自己的应用程序中,为用户带来更加智能化的体验。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。