从数字化到智能化,企业级智能体洞察

今天我们聊一下企业智能体。目前很多企业已经完成基础的数字化部署,企业实现了业务数据从纸质到电子化、业务流程从线下到线上的跃迁。企业积累了海量数据资产,而如何将数据转化为实际生产力,驱动企业业务增长,将成为数字化转型的下一个核心命题。企业级智能体或将在新一轮技术变革中扮演关键角色,重塑企业未来。

图片

企业级智能体的核心技术和架构

构建企业级智能体核心的技术要素:

图片

人工智能与机器学习 (AI&ML): 这是智能体的技术根本,赋予其感知、学习、推理、决策等核心能力。 以深度学习和强化学习技术为代表,驱动智能体不断进化和优化。

自然语言处理 (NLP): 实现智能体与人类以及非结构化数据(如文本、语音)的自然交互,是构建智能客服、智能助手等应用的关键技术。
知识图谱: 构建企业级智能体的知识底座,将企业内外部的知识、数据、信息进行结构化、语义化表示,为智能体的推理和决策提供专有的知识支撑。

自动化技术: 例如 RPA、iPaaS (集成平台即服务)、工作流引擎等,用于驱动智能体执行任务,实现业务流程的自动化和智能化。

云计算与边缘计算:提供智能体运行所需的算力、存储、网络等基础设施,并支持智能体在云端和边缘侧的灵活部署和协同工作。

架构层面企业级智能体通常遵循分层架构,以实现功能模块化和解耦:

图片

感知层

负责从企业内外部环境中采集数据和信息,例如通过API接口对接业务系统,通过传感器采集物理世界数据,通过用户界面获取用户输入等。

知识层

构建和维护企业知识库,对感知层采集的数据进行知识抽取、知识融合、知识存储和知识管理,形成智能体的知识底座。

推理决策层

基于知识库和感知层输入的信息,运用AI和机器学习算法进行分析、推理、预测和决策制定。 这是智能体的大脑核心。

执行层

负责执行推理决策层制定的决策,并转化为实际的行动,例如调用业务系统API执行操作,控制自动化设备,与用户进行自然语言交互等。
这种分层架构使得企业可以根据自身需求,灵活构建和扩展智能体系统,并逐步提升智能体的智能化水平。

企业级智能体应用场景

以下是智能体在企业中的一些典型应用场景:

图片

智能客服

7x24小时在线解答客户咨询,处理常见问题,智能分配工单,提升客户服务效率和满意度,降低人工客服成本。

智能销售助手

挖掘潜在客户,分析客户画像,提供个性化产品推荐,辅助销售人员进行客户跟进和销售转化,提升销售业绩。

智能供应链管理

预测市场需求,优化库存水平,自动化采购流程,实时监控物流状态,提升供应链效率和韧性,降低运营风险。

智能风控

实时监控交易数据、用户行为等,识别异常交易和潜在风险,进行风险评估和预警,保障企业资产安全,降低合规风险。

智能研发

辅助产品设计,加速研发流程,进行仿真测试和优化,提升研发效率和创新能力,缩短产品上市周期。

智能生产

实现生产流程的自动化、智能化和柔性化,进行质量检测和异常预警,优化生产调度,提升生产效率和产品质量。

除了以上典型场景,智能体在财务、人力资源、行政办公等领域也拥有广阔应用前景。 关键在于企业需要结合自身行业特点和业务需求,深入挖掘智能体技术的应用潜力,制定清晰的智能化战略。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值