本文主要介绍 AI 智慧农业模型方案,涵盖智慧农业概述、信息化建设、成功案例分享、自身优势以及智慧投资方案等内容。通过分析现状、阐述发展背景和意义,介绍方案中信息化的各个环节,展示实际案例,突出优势,探讨投资前景,全面呈现 AI 智慧农业模型的全貌,为农业从业者和关注农业发展的人士提供参考。
1. 智慧农业概述
1.1 现状分析
我国农业存在生产分散、规模小,现代农业经济组织发展滞后,融资困难,流通环节多、损耗大、成本高,信息不对称以及农产品缺乏有效分级体系等问题。与美国、荷兰、以色列等农业发达国家相比,在规模化、智能化、科技应用等方面存在差距。传统农业依赖人工管理,技术手段落后;现代农业虽有进步,但在数据管理和分析平台的智能化、灾害预警等方面仍需提升;智慧农业则能实现多样传感数据的采集、智能处理和远程控制等 。
1.2 发展背景
土地流转推动种养殖业规模经营,提升了农业的规模化、集约化和市场化程度。城市化进程加快,城乡融合互动加强,休闲创意农业快速发展,新农业业态不断涌现,从业人员增多。农畜产品安全问题受到广泛关注,促使农业生产向更安全、可追溯的方向发展。国家持续加大对农业的支持和投入,重视信息化建设及信息服务。
1.3 发展意义
政府能全面掌握农业生产资源和数据,监督农产品生产和质量追溯,整合资源,为农场和农民提供高效服务。通过封闭生鲜农产品流通体系,实行严格的准入管理和全程监控,确保农产品质量安全,实现从基地到餐桌的全程可追溯。借助信息化手段,掌握生产和销售信息,合理预测种植规模和上市时间,保障农产品稳定供给。缩短流通环节,降低物流成本和果菜损耗,降低终端销售价格,增加农民收入,推动果蔬品牌塑造和产业升级。通过建设农业服务平台,健全农业经济体系,完善社会服务体系;建立农业电商平台,平衡供需关系;建立农业知识库和专家库,为农业生产提供知识和技术支持。
1.4 国家政策
国家出台一系列政策推动农业信息化发展,包括农业政务信息化、服务信息化、生产科技化和贸易信息化。《中国制造 2025》和《十三五规划》等政策文件强调应用现代信息技术推动农业全产业链改造升级,健全农产品质量安全监管体系和农业社会化服务体系 。
2. 智慧农业信息化
2.1 信息共享
通过建设监控视频、传感器、智能控制系统和网络,采集农业数据,建立农业综合数据库,实现数据交换与整合、共享。将云计算、物联网等技术应用于农业,建成集多种应用为一体的云平台,接入智慧城市建设标准。该平台可实现质量溯源、应急指挥、病虫害防控等功能,为农业生产提供多方面支持,同时进行大数据应用分析,辅助决策。
2.2 高效存储
利用数据云处理技术统一分类处理信息流,降低成本,提高效率;通过数据采集感知技术监测农作物生长状态等;融合通信技术实现多种通信技术协作;运用数据库及 WEB 服务技术进行农业生产信息管理和农产品在线订购配送等后台管理;借助农业智能决策技术为农业生产各环节提供决策依据。云服务在农业领域应用广泛,具有多种服务形式和内容,能满足不同主体的信息化需求,且具有便捷、安全、智能、差异化服务等优势。云归档、云存储等技术可统一管理异构资源,提高资源利用率,降低业务部署成本,提供业务孵化、开发测试等能力。以温室为例,综合利用多种系统可建成具有示范意义的温室。
2.3 网络安全
信息安全具有可靠性、可用性、保密性等特征,可自适应网络安全模型 P2DR 从网络运行角度保障安全。农业网络安全需防止内部信息外泄、监控网络访问、监测流量、防范病毒和 Dos/DDos 攻击等,通过数据加密、数字签名、身份认证、防火墙、病毒查杀、入侵检测等技术进行防护,并实现内网外网隔离。
2.4 运营管理
涵盖财务管理、预算管理、物流管理等多方面,通过 H—ERP 基础平台实现人、财、物的综合管理。从规范达成、整体运营、质量分析等多个维度进行管理和分析,涉及服务层、应用层等多个层面,通过系统应用管理、任务管理等功能实现对环境监测、设备控制等的管理,支持多终端操作,满足不同场景需求。
2.5 监控管理
对软件、用户、审计等进行管理,展示性能和故障情况,通过大屏显示、移动终端等进行监控和管理。实现对服务器、数据库、网络等多种设备和资源的统一管理,保障应用性能,支持多数据中心集中维护,简化运维工作。
2.6 移动农业
基于 VPDN 技术和 3G/4G 网络,实现远程接入和多终端支持,通过 PKI/CA 认证体系等确保安全可靠,数字证书受法律保护。农委办公人员可随时随地访问办公系统,提高工作效率。农业移动执法具备查看案卷信息、地图浏览、案卷办理等多种业务功能,通过特定流程实现执法数据的高效处理和管理。
3. 成功案例分享
贵州茅台集团对 80 万亩高粱种植进行全方位管理,包括计划种植、生长过程监管、检测、收购等环节。通过结合土壤和环境因素推荐种植作物,制定种植计划;完善产品质检和溯源体系;利用视频监控和物联传感设备监管生长过程;管理收购订单,分析收购价格等,实现高粱种植的高产化、智能化、精细化管理,保障酒的品质。该案例中涉及大数据平台及应用,涵盖角色管理、流程管理等多种功能,实现系统对接和商业分析应用,对基地进行考评,利用多方面数据进行关联分析和产量预测等 。
4. 智慧农业概述
智慧农业是农业未来趋势,应注重服务农业,而非替代农业,要以服务三农为宗旨,推动农业智慧化变革 。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。