📊 研究一览
背景简介:红外成像在自动驾驶和机器人操作中作为辅助模态具有重要作用,因其在复杂环境下的稳定表现而备受青睐。然而,红外相机的固有局限性(如低空间分辨率和复杂的退化问题)始终影响着成像质量和后续视觉任务的表现。因此,红外图像超分辨率(IISR)技术应运而生,旨在从低分辨率红外图像中重建高分辨率图像。
核心问题:现有的超分辨率方法往往忽略了红外成像的独特模态特性,或忽视了机器感知的需求。如何设计一种既能提升视觉质量,又能优化下游任务(如目标检测和语义分割)性能的红外图像超分辨率模型?
💡 创新亮点
本研究提出了以下创新点:
- ✨ 梯度引导的扩散模型:通过将视觉和感知先验的梯度注入扩散过程中的噪声估计,实现了任务导向的超分辨率优化,同时提升了视觉质量和感知性能。
- ✨ 红外热谱分布调节:引入红外热谱分布调节机制,通过匹配高分辨率图像和超分辨率图像的频率成分,确保重建图像在视觉上与高分辨率图像一致。
- ✨ 感知引导机制:利用预训练的视觉基础模型(如VGG和SAM)作为感知引导,为扩散过程注入可泛化的感知特征,显著提升了目标检测和语义分割的性能。
🔍 研究方法
本研究提出了一种基于梯度引导的扩散模型(DifIISR),用于红外图像超分辨率。具体而言,研究者在扩散过程中引入了视觉和感知先验的梯度,通过优化噪声估计来逐步提升模型的输出质量。视觉引导通过傅里叶变换调节红外图像的热谱分布,确保重建图像在频率域上与高分辨率图像对齐;感知引导则通过VGG和SAM等模型提取特征,优化模型在下游任务中的表现。
DifIISR架构图
图1: DifIISR的整体架构,展示了如何通过梯度引导的扩散过程实现红外图像的超分辨率重建。
🏆 主要贡献
该研究的主要贡献包括:
- 🌟 提出了一种基于梯度引导的扩散模型(DifIISR),通过注入视觉和感知先验的梯度,实现了任务导向的红外图像超分辨率。
- 🌟 引入了红外热谱分布调节机制,确保重建图像在视觉上与高分辨率图像一致,显著提升了视觉保真度。
- 🌟 通过感知引导机制,利用预训练的视觉基础模型优化了模型在下游任务(如目标检测和语义分割)中的表现。
📈 实验结果
实验结果表明,DifIISR在多个数据集上均取得了优异的性能。在M³FD数据集上,DifIISR在无参考指标CLIP-IQA和MUSIQ上分别达到了0.6144和55.194,显著优于其他方法。此外,DifIISR在目标检测和语义分割任务中也表现突出,分别提升了5.6%和7.4%的性能。
性能比较
图2: DifIISR与其他方法在红外图像超分辨率任务中的视觉对比,展示了其在细节重建和视觉保真度上的优势。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。