ConvGRU原理与开源代码

仅需要网络源码的可以直接跳到末尾即可
需要ConvLSTM的可以参考我的另外一篇博客:小白也能读懂的ConvLSTM!(开源pytorch代码)

1. 算法简介与应用场景

ConvGRU(卷积门控循环单元)是一种结合了卷积神经网络(CNN)和门控循环单元(GRU)的深度学习模型。与ConvLSTM类似,ConvGRU也主要用于处理时空数据,特别适用于需要考虑空间特征和时间依赖关系的任务,如视频分析、气象预测和交通流量预测等。

在视频分析中,ConvGRU可以帮助识别和预测视频中的动态行为,利用时间序列的连续性和空间信息进行更准确的分析。在气象预测中,ConvGRU能够根据过去的气象数据(如降水、云图等)预测未来的天气情况。

2. 算法原理

2.1 GRU基础

在介绍ConvGRU之前,首先让我们回顾一下什么是门控循环单元(GRU)。GRU是一种特殊的循环神经网络(RNN),它通过引入门控机制来解决传统RNN在长序列训练中面临的梯度消失和爆炸问题。GRU单元主要包含两个门:重置门和更新门。这些门控制着信息在单元中的流动,从而有效地记住或遗忘信息。

GRU的核心公式如下:

  • 重置门
    r t = σ ( W r ⋅ [ h t − 1 , x t ] + b r ) r_t = \sigma(W_r \cdot [h_{t-1}, x_t] + b_r) rt=σ(Wr[ht1,xt]+br)

  • 更新门
    z t = σ ( W z ⋅ [ h t − 1 , x t ] + b z ) z_t = \sigma(W_z \cdot [h_{t-1}, x_t] + b_z) zt=σ(Wz[ht1,xt]+bz)

  • 候选状态
    h ~ t = tanh ⁡ ( W h ⋅ [ r t ∗ h t − 1 , x t ] + b h ) \tilde{h}_t = \tanh(W_h \cdot [r_t * h_{t-1}, x_t] + b_h) h~t=tanh(Wh[rtht1,xt]+bh)

  • 最终状态
    h t = ( 1 − z t ) ∗ h t − 1 + z t ∗ h ~ t h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t ht=(1zt)ht1+zth~t

这里, h t h_t ht 是当前的隐藏状态, x t x_t xt 是当前的输入。

2.2 ConvGRU原理

ConvGRU在GRU的基础上引入了卷积操作。与ConvLSTM类似,ConvGRU使用卷积层来处理空间数据,从而能够更好地捕捉输入数据中的空间特征。

ConvGRU结构图

没找到ConvGRU的图,和LSTM道理一样的

2.2.1 ConvGRU的结构

ConvGRU的单元结构与GRU非常相似,但是在每个门的计算中使用了卷积操作。具体来说,ConvGRU的每个门的公式可以表示为:

z t = σ ( W z ∗ X t + U z ∗ H t − 1 + b z ) z_t = \sigma (W_{z} * X_t + U_{z} * H_{t-1} + b_z) zt=σ(WzXt+UzHt1+bz)
r t = σ ( W r ∗ X t + U r ∗ H t − 1 + b r ) r_t = \sigma (W_{r} * X_t + U_{r} * H_{t-1} + b_r) rt=σ(WrXt+UrHt1+br)
h ~ t = tanh ⁡ ( W h ∗ X t + U h ∗ ( r t ∗ H t − 1 ) + b h ) \tilde{h}_t = \tanh(W_{h} * X_t + U_{h} * (r_t * H_{t-1}) + b_h) h~t=tanh(WhXt+Uh(rtHt1)+bh)
h t = ( 1 − z t ) ∗ H t − 1 + z t ∗ h ~ t h_t = (1 - z_t) * H_{t-1} + z_t * \tilde{h}_t ht=(1zt)Ht1+zth~t

这里的所有 W W W U U U都是卷积权重, b b b是偏置项, σ \sigma σ 是 sigmoid 函数, tanh ⁡ \tanh tanh 是双曲正切函数。

ConvGRU结构图

2.2.2 卷积操作的优点
  1. 空间特征提取:卷积操作能够有效提取输入数据中的空间特征。对于图像数据,卷积操作可以捕捉局部特征,例如边缘、纹理等,这在时间序列数据中同样适用。

  2. 参数共享:卷积操作通过使用相同的卷积核在不同位置计算特征,从而减少了模型参数的数量,降低了计算复杂度。

  3. 平移不变性:卷积网络对输入数据的平移具有不变性,即相同的特征在不同位置都会被检测到,这对于时空序列数据来说是非常重要的。

2.3 GRU与ConvGRU的对比分析

特性GRUConvGRU
输入类型一维序列三维数据(时序的图像数据)
处理方式全连接层卷积操作
空间特征捕捉较弱较强
应用场景自然语言处理、时间序列预测图像序列预测、视频分析

2.4 ConvGRU的应用

ConvGRU在多个领域中表现出色,特别适合处理具有时空特征的数据。以下是一些主要的应用场景:

  • 气象预测:利用历史气象数据(如温度、湿度、降水等)来预测未来的天气情况。
  • 视频分析:对视频中的动态场景进行建模,识别和预测视频中的活动。
  • 交通流量预测:基于历史交通数据预测未来的交通流量,帮助城市交通管理。
  • 医学影像分析:分析医学影像序列(如CT、MRI)中的变化,辅助疾病诊断。

3. PyTorch代码

以下是一个简单的ConvGRU的网络完整代码:

import os
import torch
from torch import nn
from torch.autograd import Variable


class ConvGRUCell(nn.Module):
    def __init__(self, input_size, input_dim, hidden_dim, kernel_size, bias, dtype):
        """
        初始化卷积 GRU 单元。

        :param input_size: (int, int)
            输入张量的高度和宽度作为 (height, width)。
        :param input_dim: int
            输入张量的通道数。
        :param hidden_dim: int
            隐藏状态的通道数。
        :param kernel_size: (int, int)
            卷积核的大小。
        :param bias: bool
            是否添加偏置项。
        :param dtype: torch.cuda.FloatTensor 或 torch.FloatTensor
            是否使用 CUDA。
        """
        super(ConvGRUCell, self).__init__()
        self.height, self.width = input_size
        self.padding = kernel_size[0] // 2, kernel_size[1] // 2
        self.hidden_dim = hidden_dim
        self.bias = bias
        self.dtype = dtype

        # 定义用于计算更新门和重置门的卷积层
        self.conv_gates = nn.Conv2d(in_channels=input_dim + hidden_dim,
                                    out_channels=2 * self.hidden_dim,  # 用于更新门和重置门
                                    kernel_size=kernel_size,
                                    padding=self.padding,
                                    bias=self.bias)

        # 定义用于计算候选神经记忆的卷积层
        self.conv_can = nn.Conv2d(in_channels=input_dim + hidden_dim,
                                  out_channels=self.hidden_dim,  # 用于候选神经记忆
                                  kernel_size=kernel_size,
                                  padding=self.padding,
                                  bias=self.bias)

    def init_hidden(self, batch_size):
        """
        初始化隐藏状态。

        :param batch_size: int
            批次大小。
        :return: Variable
            隐藏状态。
        """
        return Variable(torch.zeros(batch_size, self.hidden_dim, self.height, self.width)).type(self.dtype)

    def forward(self, input_tensor, h_cur):
        """
        前向传播函数。

        :param input_tensor: (b, c, h, w)
            输入张量实际上是目标模型。
        :param h_cur: (b, c_hidden, h, w)
            当前的隐藏状态。
        :return: h_next
            下一个隐藏状态。
        """
        combined = torch.cat([input_tensor, h_cur], dim=1)
        combined_conv = self.conv_gates(combined)

        # 分割卷积输出以获取更新门和重置门
        gamma, beta = torch.split(combined_conv, self.hidden_dim, dim=1)
        reset_gate = torch.sigmoid(gamma)
        update_gate = torch.sigmoid(beta)

        # 使用重置门乘以当前隐藏状态
        combined = torch.cat([input_tensor, reset_gate * h_cur], dim=1)
        cc_cnm = self.conv_can(combined)
        cnm = torch.tanh(cc_cnm)

        # 更新隐藏状态
        h_next = (1 - update_gate) * h_cur + update_gate * cnm
        return h_next


class ConvGRU(nn.Module):
    def __init__(self, input_size, input_dim, hidden_dim, kernel_size, num_layers,
                 dtype, batch_first=False, bias=True, return_all_layers=False):
        """
        初始化卷积 GRU 模型。

        :param input_size: (int, int)
            输入张量的高度和宽度作为 (height, width)。
        :param input_dim: int
            输入张量的通道数。
        :param hidden_dim: int
            隐藏状态的通道数。
        :param kernel_size: (int, int)
            卷积核的大小。
        :param num_layers: int
            卷积 GRU 层的数量。
        :param dtype: torch.cuda.FloatTensor 或 torch.FloatTensor
            是否使用 CUDA。
        :param batch_first: bool
            如果数组的第一个位置是批次。
        :param bias: bool
            是否添加偏置项。
        :param return_all_layers: bool
            是否返回所有层的隐藏状态。
        """
        super(ConvGRU, self).__init__()

        # 确保 kernel_size 和 hidden_dim 的长度与层数一致
        kernel_size = self._extend_for_multilayer(kernel_size, num_layers)
        hidden_dim = self._extend_for_multilayer(hidden_dim, num_layers)
        if not len(kernel_size) == len(hidden_dim) == num_layers:
            raise ValueError('不一致的列表长度。')

        self.height, self.width = input_size
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        self.kernel_size = kernel_size
        self.dtype = dtype
        self.num_layers = num_layers
        self.batch_first = batch_first
        self.bias = bias
        self.return_all_layers = return_all_layers

        cell_list = []
        for i in range(0, self.num_layers):
            # 确定当前层的输入维度
            cur_input_dim = input_dim if i == 0 else hidden_dim[i - 1]
            # 创建并添加卷积 GRU 单元到列表
            cell_list.append(ConvGRUCell(input_size=(self.height, self.width),
                                         input_dim=cur_input_dim,
                                         hidden_dim=self.hidden_dim[i],
                                         kernel_size=self.kernel_size[i],
                                         bias=self.bias,
                                         dtype=self.dtype))

        # 将 Python 列表转换为 PyTorch 模块
        self.cell_list = nn.ModuleList(cell_list)

    def forward(self, input_tensor, hidden_state=None):
        """
        前向传播函数。

        :param input_tensor: (b, t, c, h, w) 或 (t, b, c, h, w)
            从 AlexNet 提取的特征。
        :param hidden_state:
            初始隐藏状态。
        :return: layer_output_list, last_state_list
            各个层的输出列表以及最后一个状态列表。
        """
        if not self.batch_first:
            # 如果不是按批次优先,则重新排列维度
            input_tensor = input_tensor.permute(1, 0, 2, 3, 4)

        # 实现状态化的卷积 GRU
        if hidden_state is not None:
            raise NotImplementedError()
        else:
            # 初始化隐藏状态
            hidden_state = self._init_hidden(batch_size=input_tensor.size(0))

        layer_output_list = []
        last_state_list = []

        seq_len = input_tensor.size(1)
        cur_layer_input = input_tensor

        for layer_idx in range(self.num_layers):
            h = hidden_state[layer_idx]
            output_inner = []
            for t in range(seq_len):
                # 计算当前层的下一个隐藏状态
                h = self.cell_list[layer_idx](input_tensor=cur_layer_input[:, t, :, :, :],
                                              h_cur=h)
                output_inner.append(h)

            # 将序列内的隐藏状态堆叠起来
            layer_output = torch.stack(output_inner, dim=1)
            cur_layer_input = layer_output

            layer_output_list.append(layer_output)
            last_state_list.append([h])

        if not self.return_all_layers:
            # 如果不需要返回所有层,则只返回最后一层的输出和状态
            layer_output_list = layer_output_list[-1:]
            last_state_list = last_state_list[-1:]

        return layer_output_list, last_state_list

    def _init_hidden(self, batch_size):
        """
        初始化隐藏状态。

        :param batch_size: int
            批次大小。
        :return: list
            每一层的初始化隐藏状态列表。
        """
        init_states = []
        for i in range(self.num_layers):
            init_states.append(self.cell_list[i].init_hidden(batch_size))
        return init_states

    @staticmethod
    def _check_kernel_size_consistency(kernel_size):
        """
        检查 kernel_size 的一致性。

        :param kernel_size: tuple 或 list of tuples
            卷积核大小。
        """
        if not (isinstance(kernel_size, tuple) or
                    (isinstance(kernel_size, list) and all([isinstance(elem, tuple) for elem in kernel_size]))):
            raise ValueError('`kernel_size` 必须是 tuple 或 list of tuples')

    @staticmethod
    def _extend_for_multilayer(param, num_layers):
        """
        扩展参数以适应多层结构。

        :param param: int 或 list
            参数。
        :param num_layers: int
            层数。
        :return: list
            扩展后的参数列表。
        """
        if not isinstance(param, list):
            param = [param] * num_layers
        return param
  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值