yolo精确率和召回率的通俗理解

本文详细解释了在YOLO目标检测过程中,如何区分正样本(TT,TN)和负样本(NT,NN),并阐述了精确率和召回率的概念,以及它们在评估模型性能时的作用。此外,还提到了map50和map0.25、0.5、0.75这些评价指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前面没啥,重点是要你先关注,才能看后面,再看看,马上不能看了吧,坚持坚持,点个关注就可以都看到了,哈哈哈

注:对于其中一个目标来说,只有他是正样本,其他所有均为负样本

首先说明yolo检测过程中,会将结果分为四类,

T检测为正确(1、TP(P的意思是检测为正样本,T的意思是指上一句话(P的意思是检测为正样本)是正确的),2、TN(N:检测为负样本,T的意思是指上一句话(N:检测为负样本)是正确的但))

F检测为错误(3、FP(P:检测为正样本样本,F:(P:检测为正样本样本)这句话是错误的),4、FN(N:检测为负样本,F:(N:检测为负样本)这句话是错误的))

精确率,简单来说就是预测为正样本的样本中正确的所占比例(P检测为正样本)中的正确率=TP/(TP+FP)或=TP/P

换一句话来说精确率就是在反映yolo看到(检测)的结果对不对

召回率,简单来说就是检测到的正样本占所有正样本的比例(TP检测为正样本,FN表示预测为负样本但是预测是错误的,因此指的还是正样本)=TP/(TP+FN)

换一句话来说召回率就是在反映yolo能不能看到(检测)到标签

注:yolo中底层算法会每个目标如此都计算,然后通过算法计算出总结果map50和map0.25、0.5、0.75

### 提高YOLO模型召回率的方法 #### 1. 数据增强策略 通过增加数据多样性可以显著提升模型的表现。具体方法包括但不限于图像翻转、旋转以及颜色抖动等操作[^1]。这些变换不仅增加了训练集规模,而且使得网络能够学习到更多样化的特征。 #### 2. 调整IoU阈值 在非极大抑制(NMS)过程中调整交并比(IoU)阈值可以帮助改善召回率。较低的IoU阈值允许更多的边界框保留下来作为最终检测结果的一部分,从而有可能捕获那些原本会被过早过滤掉的真实阳性实例[^3]。 #### 3. 使用更复杂的损失函数 引入额外项至原始损失函数中,比如Focal Loss, 可以使模型更加关注难以分类的对象,进而有助于提高整体召回水平。Focal loss通过对容易分错的目标施加更大的权重来鼓励模型专注于困难案例的学习过程。 #### 4. 遗传算法优化超参数 利用遗传算法自动寻找最优组合方式来进行超参调优工作也是一种有效手段。这种方法可以在较大范围内探索不同配置下的表现差异,并找到最适合当前任务需求的那一组设置。 #### 5. 多尺度训练与测试 让模型在同一时间接收多种分辨版本输入图片,在一定程度上也可以帮助其更好地捕捉不同类型大小目标的信息,进一步促进召回能力的增长。 ```python import torch from torchvision import transforms def data_augmentation(image): transform = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.RandomRotation(10), transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1) ]) augmented_image = transform(image) return augmented_image ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值