yolo精确率和召回率的通俗理解

本文详细解释了在YOLO目标检测过程中,如何区分正样本(TT,TN)和负样本(NT,NN),并阐述了精确率和召回率的概念,以及它们在评估模型性能时的作用。此外,还提到了map50和map0.25、0.5、0.75这些评价指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前面没啥,重点是要你先关注,才能看后面,再看看,马上不能看了吧,坚持坚持,点个关注就可以都看到了,哈哈哈

注:对于其中一个目标来说,只有他是正样本,其他所有均为负样本

首先说明yolo检测过程中,会将结果分为四类,

T检测为正确(1、TP(P的意思是检测为正样本,T的意思是指上一句话(P的意思是检测为正样本)是正确的),2、TN(N:检测为负样本,T的意思是指上一句话(N:检测为负样本)是正确的但))

F检测为错误(3、FP(P:检测为正样本样本,F:(P:检测为正样本样本)这句话是错误的),4、FN(N:检测为负样本,F:(N:检测为负样本)这句话是错误的))

精确率,简单来说就是预测为正样本的样本中正确的所占比例(P检测为正样本)中的正确率=TP/(TP+FP)或=TP/P

换一句话来说精确率就是在反映yolo看到(检测)的结果对不对

召回率,简单来说就是检测到的正样本占所有正样本的比例(TP检测为正样本,FN表示预测为负样本但是预测是错误的,因此指的还是正样本)=TP/(TP+FN)

换一句话来说召回率就是在反映yolo能不能看到(检测)到标签

注:yolo中底层算法会每个目标如此都计算,然后通过算法计算出总结果map50和map0.25、0.5、0.75

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值