从CVPR 2024看域适应、域泛化最新研究进展

域适应和域泛化一直以来都是各大顶会的热门研究方向。

域适应指:当我们在源域上训练的模型需要在目标域应用时,如果两域数据分布差异太大,模型性能就有可能降低。这时可以利用目标域的无标签数据,通过设计特定方法减小域间差异,来提升模型在目标域的性能。

域泛化与域适应不同,域泛化让模型学会泛化到多个新测试域,而不仅仅是适应一个特定的目标域。这种方法的核心在于利用多源域信息增强模型泛化能力。

本文盘点了 CVPR 2024 有关域适应、域泛化的研究成果 32 篇,帮助大家了解并掌握最新的进展。

论文原文以及开源代码需要的同学看文末

域适应

Improving the Generalization of Segmentation Foundation Model under Distribution Shift via Weakly Supervised Adaptation

第一个针对「Segment Anything」大模型的域适应策略

方法:本文研究了Segment-Anything模型在多个图像分割任务中的泛化能力,并提出了一种适应性方法,该方法不需要访问源数据集且内存开销低,能够通过弱监督有效改善模型的适应性,通过对10个数据集的广泛评估,表明了该方法的有效性。

### CVPR会议中的域适应目标检测研究 在计算机视觉领域,域适应目标检测是一个重要的研究方向。该主题旨在解决源域和目标域之间的分布差异问题,从而提高模型在新环境下的泛化能力。 一篇名为《Illuminating Pedestrians via Simultaneous Detection & Segmentation》的文章探讨了通过同时进行行人检测与分割来改善夜间场景下行人的可见度[^1]。虽然这篇文章主要关注于特定条件下的对象识别改进,但其方法论对于理解跨不同数据集的目标检测具有借鉴意义。 为了实现有效的域适应,在CVPR会议上发表的相关工作通常会采用多种策略: - **特征空间对齐**:利用对抗训练或其他技术使来自两个不同领域的样本在特征表示上更加相似。 - **自监督学习**:引入额外的任务帮助网络更好地捕捉图像的本质属性而不依赖标签信息。 - **伪标注机制**:基于初始模型预测为目标域未标记的数据生成可靠的标签用于进一步优化。 ```python import torch.nn as nn class DomainAdaptationModel(nn.Module): def __init__(self, backbone, classifier): super(DomainAdaptationModel, self).__init__() self.backbone = backbone # 特征提取器 self.classifier = classifier # 分类头 def forward(self, x_source, x_target=None): f_s = self.backbone(x_source) y_pred_source = self.classifier(f_s) if x_target is not None: f_t = self.backbone(x_target) return y_pred_source, f_s, f_t else: return y_pred_source ``` 此代码片段展示了一个简单的域适配框架结构,其中包含了共享的骨干网络以及分类头部。当提供目标域输入时,可以计算并最小化源域和目标域之间特征分布的距离以促进迁移性能提升。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值