域适应和域泛化一直以来都是各大顶会的热门研究方向。
域适应指:当我们在源域上训练的模型需要在目标域应用时,如果两域数据分布差异太大,模型性能就有可能降低。这时可以利用目标域的无标签数据,通过设计特定方法减小域间差异,来提升模型在目标域的性能。
而域泛化与域适应不同,域泛化让模型学会泛化到多个新测试域,而不仅仅是适应一个特定的目标域。这种方法的核心在于利用多源域信息增强模型泛化能力。
本文盘点了 CVPR 2024 有关域适应、域泛化的研究成果 32 篇,帮助大家了解并掌握最新的进展。
论文原文以及开源代码需要的同学看文末
域适应
Improving the Generalization of Segmentation Foundation Model under Distribution Shift via Weakly Supervised Adaptation
第一个针对「Segment Anything」大模型的域适应策略
方法:本文研究了Segment-Anything模型在多个图像分割任务中的泛化能力,并提出了一种适应性方法,该方法不需要访问源数据集且内存开销低,能够通过弱监督有效改善模型的适应性,通过对10个数据集的广泛评估,表明了该方法的有效性。