【倒立摆】基于PID实现双回路倒立摆控制附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

如果只引用一路PID对角度进行控制的时候,我们会发现,参数调节,角度是可以控制好的,但是位置项却控制不好的。这是为什么呢,因为输出里之和角度有关,没有位置的信息。就好像一个演员,在顶杆的时候,如果只盯着杆看,不注意脚下,是很容易走出舞台的,那时就没工资了。这里角度信息不包含位置信息的意思,假设解读为θ,角速度为Ω,此时坐标可以为任何值,而不是一个确定的值。这个角度来说倒立摆是欠驱动系统。

后来查文献,就看到双路PD控制了。对于这个为什么可以,在实验后再看看原因。

当使用PID控制的时候,我们需要建立一个测量系统。这也是为什么强调上面的正方向是模型本身的。于是,假设力向右为正的话:假设角度为5°的话,此时,从物理角度来说,我们需要施加一个向右的力,才能使倒立摆的角度变成参考值0°,而根据负反馈来看,误差=参考值-观测值。那么这个观测值就需要是负值,才能使得误差为正值,乘以相应的系数得到的力才能为正。因此,对于测量角度的正方向为逆时针。同理,可以得到对位置想的观测正方向为向右为正。但是,经过试验发现,对于位置的观测得向左为正。

对于双路PD控制,控制周期为0.025s,结构为:

对于参数的选择,自己设置不好,于是采用遗传算法的方式进行参数优化。适应度函数使用的是ISTE准则,也就是误差的绝对值和时间的乘积之和。如果这个值越小,说明该去曲线和目标值越近,说明控制曲线越好。对于一组参数的好坏,首先使用该参数进行一次控制模拟,控制周期为0.01s,控制时长20s,控制初始位置1m处和倒立摆角度为30度开始。

优化结果最开始优化时使用的控制的初始位置为1m,倒立摆角度30度。初始种群为46个,迭代参数设置下限为0,上限位250,迭代365次,最后得到最优的适应度函数值为3890.12,最后得到的最优个体参数为,角度通道参数Kp=45.12,Kd=215.2,位置通道参数:Kp=1.134,Kd=58.45。

⛄ 部分代码

<span style="color:#333333"><span style="background-color:#fafafa"><code>%% 双回路PID控制倒立摆</code><code>%   </code><code>%   最大外力10N</code><code>%   模型里角度顺时针为正,但是控制里,需要逆时针为正,故需要取反。</code><code>clc;</code><code>clear;</code><code>close all</code><code>%% PID控制,双回路,位置角度PD求和</code><code>tStep = 0.025;                                          %采样时间0.025s</code><code>tFinal = 30;                                            %控制时长</code><code>​</code><code>Kpa = 45;</code><code>Kda = 0.2;</code><code>Kpx = 1.8;</code><code>Kdx = 1.2;</code><code>​</code><code>temp=[0,0,15*pi/180,0,0];</code><code>Ea=temp(3);</code><code>Ea1=0;</code><code>Ex=temp(1);</code><code>Ex1=0;</code><code>​</code><code>tt = (0:tStep:tFinal);</code><code>wx = (0:tStep:tFinal);</code><code>wc = (0:tStep:tFinal);</code><code>out= (0:tStep:tFinal);</code><code>​</code><code>wc(1)=temp(3)*180/pi;</code><code>wx(1)=temp(1);</code><code>​</code><code>am = 0;</code><code>an = 0;</code><code>​</code><code>xm = 0;</code><code>x  = 0;</code><code>fitness = 0;</code><code>for tp = tStep:tStep:tFinal</code><code>    [t,y]=ode45(@DaoliBai,[tp-tStep,tp],temp);</code><code>   </code><code>    xm = y(end,1);</code><code>    if(y(end,3)>pi)                                     %角度转化到[-pi,pi],wm为模型角度</code><code>        am = y(end,3) - 2*pi;</code><code>    elseif(y(end,3) < -pi)</code><code>        am = y(end,3) + 2*pi;</code><code>    <span style="color:#ca7d37">else</span></code><code>        am = y(end,3);</code><code>    end</code><code>       </code><code>    an = -am;                                            %控制的角度</code><code>    x  = -xm;</code><code>   </code><code>    Ea = 0 - an;                                         %计算当前误差</code><code>    Ex = 0 - x;</code><code>    </code><code>    outw = Kpa*(Ea+Kda*(Ea-Ea1)/tStep) ;</code><code>    outx = Kpx*(Ex+Kdx*(Ex-Ex1)/tStep) ;</code><code>    </code><code>    temp(5)=outw + outx;                                %PID计算输出</code><code>     </code><code>    if(temp(5)>20)                                      %最大外力10N</code><code>        temp(5) = 20;</code><code>    elseif(temp(5)<-20)</code><code>        temp(5) = -20;</code><code>    end</code><code>    </code><code>    temp(1) = y(end,1);</code><code>    temp(2) = y(end,2);</code><code>    temp(3) = am;</code><code>    temp(4) = y(end,4);</code><code>    </code><code>    Ea1=Ea;                                             %更新误差</code><code>    Ex1=Ex;</code><code>    </code><code>  wc(int32(tp/tStep)+1)  = am*180/pi;              %画图数据</code><code>    wx(int32(tp/tStep)+1)  = xm;</code><code>    out(int32(tp/tStep)+1) = temp(5);</code><code>    </code><code>    fitness = fitness + 0.5*abs(Ea) + 0.5*abs(Ex);</code><code>end</code><code>fitness</code><code>figure(1)</code><code>plot(tt,wc,'r-');</code><code>title('角度');</code><code>​</code><code>figure(2)</code><code>plot(tt,wx,'b-');</code><code>title('位置');</code><code>​</code><code>figure(3)</code><code>plot(tt,out,'r');</code><code>title('输出')</code></span></span>

⛄ 运行结果

⛄ 参考文献

[1] 李明,郭焕银.基于MATLAB的倒立摆系统PID控制[J].宿州学院学报, 2010, 25(2):3.DOI:10.3969/j.issn.1673-2006.2010.02.019.

[2] 刘珺蕙,张杰.基于Matlab的倒立摆PID控制系统的设计[J].西安交通工程学院学术研究, 2021, 6(1):4.

[3] 王美刚白建云.基于遗传算法优化的双回路模糊控制倒立摆系统[J].科学技术与工程, 2018, 018(013):92-97.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值