传感器信息系统中的节能收集研究(Matlab代码实现)

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🌿 往期回顾可以关注主页,点击搜索

🔥 内容介绍

由有限电池功率节点和无线通信节点组成的传感器网络用于收集来自现场的有用信息。以能源效率高的方式收集感知信息对于长期操作传感器网络至关重要。在西。海因兹曼等人。(方案)在夏威夷。系统科学。定义了一个数据收集问题,即在一轮通信中,每个传感器节点都有一个要发送到遥远基站的包。如果每个节点将其感知数据直接传输到基站,那么它将很快耗尽电源。W提出的渗滤协议。海因兹曼等人。这是一个优雅的解决方案,在传输到基站之前,集群是用来融合数据的。通过随机选择集群头来传送到基站,从节点何时死亡的角度来衡量,与直接传输相比,LATE的改进系数为8。在本文中,我们提出了一种近似最优的基于链的协议--传感器信息系统中的节能采集。在帕卡西,每个节点只与一个亲近的邻居通信,轮流向基站传输,从而减少了每一轮花费的能量。模拟结果表明,当1%、20%、50%节点和100%节点因不同的网络尺寸和拓扑而死亡时,PAGAS的性能比渗漏好约100-300%。在飞系,每个节点只与一个亲近的邻居通信,并轮流传送到基站,从而减少了每一轮花费的能量。模拟结果表明,当1%、20%、50%节点和100%节点因不同的网络尺寸和拓扑而死亡时,PAGAS的性能比渗漏好约100-300%。在飞系,每个节点只与一个亲近的邻居通信,并轮流传送到基站,从而减少了每一轮花费的能量。模拟结果表明,当1%、20%、50%节点和100%节点因不同的网络尺寸和拓扑而死亡时,PAGAS的性能比渗漏好约100-300%。

📣 部分代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                              PEGASIS                                 %%        Power-Efficient Gathering in Sensor Information Systems       %%                              Protocol                                %%                           Part of Thesis:                            %%       Energy-Efficient Protocols In Wireless Sensor Networks         %%                                                                      %close all;clear;clc;%%%%%%%%%%%%%%%%%%%% Network Establishment Parameters %%%%%%%%%%%%%%%%%%%%%%% Area of Operation %%%% Field Dimensions in meters %xm=100;ym=100;x=0; % added for better display results of the ploty=0; % added for better display results of the plot% Number of Nodes in the field %n=100;% Number of Dead Nodes in the beggining %dead_nodes=0;% Coordinates of the Sink (location is predetermined in this simulation) %sinkx=50;sinky=200;  

⛳️ 运行结果

🔗 参考文献

https://ieeexplore.ieee.org/document/1035242/

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值