✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
基于贝叶斯优化卷积神经网络结合长短记忆CNN-LSTM混合神经网络实现交通流数据预测算法流程
随着城市化进程的加速和交通工具的普及,交通拥堵问题日益突出。因此,交通流数据预测成为了一个备受关注的研究领域。为了解决这一问题,研究人员提出了各种各样的交通流数据预测算法。其中,基于贝叶斯优化的卷积神经网络(CNN)结合长短记忆网络(LSTM)的混合神经网络引起了广泛的关注。
本文将详细介绍基于贝叶斯优化的卷积神经网络结合长短记忆网络的混合神经网络实现交通流数据预测算法的流程。首先,我们将对贝叶斯优化的概念进行介绍,并阐述其在神经网络参数优化中的重要性。其次,我们将介绍卷积神经网络在交通流数据预测中的应用,并说明其在空间特征提取方面的优势。接下来,我们将详细介绍长短记忆网络在时间序列数据处理中的作用,并阐述其在交通流数据预测中的重要性。然后,我们将详细介绍基于贝叶斯优化的卷积神经网络结合长短记忆网络的混合神经网络的结构和原理,并说明其在交通流数据预测中的优势。最后,我们将通过实验结果验证该算法的有效性,并对其进行性能分析。
基于贝叶斯优化的卷积神经网络结合长短记忆网络的混合神经网络实现交通流数据预测算法的流程是一个复杂而又具有挑战性的课题。然而,通过本文的介绍和分析,我们相信读者对该算法的原理和实现流程已有了一定的了解。希望本文能够对相关研究人员提供一定的参考和帮助,推动交通流数据预测算法的进一步发展。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
🔗 参考文献
[1] 王晨阳,汪志勇,段倩倩,等.基于遗传算法优化卷积长短记忆混合神经网络模型的光伏发电功率预测[J].物理学报, 2020, 69(10):7.DOI:10.7498/aps.69.20191935.
[2] 马晨敏.基于深度学习的短时交通流量预测模型研究[J].[2023-11-08].
[3] 苏恩杰,叶飞,何乔,等.基于卷积神经网络-长短期记忆的施工期盾构管片上浮过程预测模型[J].同济大学学报(自然科学版), 2023.