【边缘检测】基于Snake模型实现图像边缘检测附Matlab代码

 ✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

图像边缘检测是计算机视觉领域中的一个重要问题,它在许多应用中都有着广泛的应用,比如图像分割、目标识别等。Snake模型作为一种经典的图像边缘检测方法,在这方面有着良好的表现。本文将介绍基于Snake模型的图像边缘检测方法,并对其进行详细的讲解和实现。

Snake模型,又称活动轮廓模型,是一种基于能量最小化原理的图像边缘检测方法。它通过定义一个能量函数,利用迭代优化的方法,使得能量函数达到最小值,从而得到图像的边缘。Snake模型的优点在于能够克服传统边缘检测方法中对噪声和图像不连续性的敏感性,能够更好地适应图像的曲线和边缘。

Snake模型的基本原理是将一个初始轮廓线放置在图像中,然后通过最小化能量函数的方式,使得轮廓线向着图像的边缘收缩。能量函数通常由内部能量和外部能量两部分组成,内部能量用于约束轮廓线的形状和平滑度,外部能量则用于吸引轮廓线向着图像的边缘。通过迭代优化能量函数,最终得到图像的边缘。

在实际实现中,Snake模型的边缘检测可以分为以下几个步骤:首先,初始化轮廓线,可以是手动标注或者自动初始化;然后,定义能量函数,包括内部能量和外部能量的计算方式;接着,利用迭代优化的方法,不断调整轮廓线的位置,使得能量函数达到最小值;最后,得到最终的边缘检测结果。

除了基本的Snake模型外,还有许多改进和扩展的方法,比如基于梯度信息的Snake模型、基于统计学习的Snake模型等,这些方法在实际应用中能够更好地适应不同类型的图像和场景。

总之,基于Snake模型的图像边缘检测方法在计算机视觉领域有着重要的地位,它能够有效地克服传统方法中的一些缺陷,并且具有较好的鲁棒性和稳定性。在实际应用中,可以根据具体的需求选择合适的Snake模型方法,并结合其他图像处理技术,实现更加准确和高效的图像边缘检测。希望本文对于对图像边缘检测感兴趣的读者有所帮助。

📣 部分代码

I%%   Once the GUI has been launched, you can use snakes by%   1. Click on "New Image" and load an input image. Samples image are%   provided.%   2. Set the smoothing parameter "sigma" or leave it at its default value%   and click "Filter". This will smooth the image.%   3. As soon as you click "Filter", cross hairs would appear and using%   them and left click of you mouse you can pick initial contour location%   on the image. A red circle would appead everywhere you click and in%   most cases you should click all the way around the object you want to%   segement. The last point must be picked using a right-click in order to%   stop matlab for asking for more points.%   4. Set the various snake parameters (relative weights of energy terms%   in the snake objective function) or leave them with their default value%   and click "Iterate" button. The snake would appear and move as it%   converges to its low energy state.%% Copyright (c) Ritwik Kumar, Harvard University 2010%               www.seas.harvard.edu/~rkkumar%% This code implements 揝nakes: Active Contour Models?by Kass, Witkin and% Terzopolous incorporating Eline, Eedge and Eterm energy factors. See the% included report and the paper to learn more.%% If you find this useful, also look at Radon-Like Features based% segmentation in  the following paper:% Ritwik Kumar, Amelio V. Reina & Hanspeter Pfister, 揜adon-Like Features % and their Application to Connectomics? IEEE Computer Society Workshop %% on Mathematical Methods in Biomedical Image Analysis (MMBIA) 2010% http://seas.harvard.edu/~rkkumar% Its code is also available on MATLAB Central%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function [xs, ys] = getsnake(image)% image: The image on which snake is to be initialized% xs, xy: Initial position of the snakehold on; %Hold the image steady       xs = [];ys = [];% xold = 0;% yold = 0;but = 1;hold on% Initially, the list of points is empty.xy = [];n = 0;% Loop, picking up the points.disp('Left mouse button picks points.')disp('Right mouse button picks last point.')but = 1;while but == 1    [xi,yi,but] = ginput(1); %pick a new input    plot(xi,yi,'ro')    n = n+1;    xy(:,n) = [xi;yi];endn = n+1;xy(:,n) = [xy(1,1);xy(2,1)];% Interpolate with a spline curve and finer spacing.t = 1:n;ts = 1: 0.1: n;xys = spline(t,xy,ts);xs = xys(1,:);ys = xys(2,:);

⛳️ 运行结果

🔗 参考文献

[1] 成金勇,范延滨,宋洁,等.基于小波分析与Snake模型的图像边缘检测方法[J].青岛大学学报:自然科学版, 2005, 18(1):5.DOI:10.3969/j.issn.1006-1037.2005.01.018.

[2] 王珂.基于改进的snake模型的图像边缘检测[D].华东师范大学[2023-11-19].DOI:10.7666/d.y1743028.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值