✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
图像边缘检测是计算机视觉领域中的一个重要问题,它在许多应用中都有着广泛的应用,比如图像分割、目标识别等。Snake模型作为一种经典的图像边缘检测方法,在这方面有着良好的表现。本文将介绍基于Snake模型的图像边缘检测方法,并对其进行详细的讲解和实现。
Snake模型,又称活动轮廓模型,是一种基于能量最小化原理的图像边缘检测方法。它通过定义一个能量函数,利用迭代优化的方法,使得能量函数达到最小值,从而得到图像的边缘。Snake模型的优点在于能够克服传统边缘检测方法中对噪声和图像不连续性的敏感性,能够更好地适应图像的曲线和边缘。
Snake模型的基本原理是将一个初始轮廓线放置在图像中,然后通过最小化能量函数的方式,使得轮廓线向着图像的边缘收缩。能量函数通常由内部能量和外部能量两部分组成,内部能量用于约束轮廓线的形状和平滑度,外部能量则用于吸引轮廓线向着图像的边缘。通过迭代优化能量函数,最终得到图像的边缘。
在实际实现中,Snake模型的边缘检测可以分为以下几个步骤:首先,初始化轮廓线,可以是手动标注或者自动初始化;然后,定义能量函数,包括内部能量和外部能量的计算方式;接着,利用迭代优化的方法,不断调整轮廓线的位置,使得能量函数达到最小值;最后,得到最终的边缘检测结果。
除了基本的Snake模型外,还有许多改进和扩展的方法,比如基于梯度信息的Snake模型、基于统计学习的Snake模型等,这些方法在实际应用中能够更好地适应不同类型的图像和场景。
总之,基于Snake模型的图像边缘检测方法在计算机视觉领域有着重要的地位,它能够有效地克服传统方法中的一些缺陷,并且具有较好的鲁棒性和稳定性。在实际应用中,可以根据具体的需求选择合适的Snake模型方法,并结合其他图像处理技术,实现更加准确和高效的图像边缘检测。希望本文对于对图像边缘检测感兴趣的读者有所帮助。
📣 部分代码
I
%
% Once the GUI has been launched, you can use snakes by
% 1. Click on "New Image" and load an input image. Samples image are
% provided.
% 2. Set the smoothing parameter "sigma" or leave it at its default value
% and click "Filter". This will smooth the image.
% 3. As soon as you click "Filter", cross hairs would appear and using
% them and left click of you mouse you can pick initial contour location
% on the image. A red circle would appead everywhere you click and in
% most cases you should click all the way around the object you want to
% segement. The last point must be picked using a right-click in order to
% stop matlab for asking for more points.
% 4. Set the various snake parameters (relative weights of energy terms
% in the snake objective function) or leave them with their default value
% and click "Iterate" button. The snake would appear and move as it
% converges to its low energy state.
%
% Copyright (c) Ritwik Kumar, Harvard University 2010
% www.seas.harvard.edu/~rkkumar
%
% This code implements 揝nakes: Active Contour Models?by Kass, Witkin and
% Terzopolous incorporating Eline, Eedge and Eterm energy factors. See the
% included report and the paper to learn more.
%
% If you find this useful, also look at Radon-Like Features based
% segmentation in the following paper:
% Ritwik Kumar, Amelio V. Reina & Hanspeter Pfister, 揜adon-Like Features
% and their Application to Connectomics? IEEE Computer Society Workshop %
% on Mathematical Methods in Biomedical Image Analysis (MMBIA) 2010
% http://seas.harvard.edu/~rkkumar
% Its code is also available on MATLAB Central
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [xs, ys] = getsnake(image)
% image: The image on which snake is to be initialized
% xs, xy: Initial position of the snake
hold on; %Hold the image steady
xs = [];
ys = [];
% xold = 0;
% yold = 0;
but = 1;
hold on
% Initially, the list of points is empty.
xy = [];
n = 0;
% Loop, picking up the points.
disp('Left mouse button picks points.')
disp('Right mouse button picks last point.')
but = 1;
while but == 1
[xi,yi,but] = ginput(1); %pick a new input
plot(xi,yi,'ro')
n = n+1;
xy(:,n) = [xi;yi];
end
n = n+1;
xy(:,n) = [xy(1,1);xy(2,1)];
% Interpolate with a spline curve and finer spacing.
t = 1:n;
ts = 1: 0.1: n;
xys = spline(t,xy,ts);
xs = xys(1,:);
ys = xys(2,:);
⛳️ 运行结果
🔗 参考文献
[1] 成金勇,范延滨,宋洁,等.基于小波分析与Snake模型的图像边缘检测方法[J].青岛大学学报:自然科学版, 2005, 18(1):5.DOI:10.3969/j.issn.1006-1037.2005.01.018.
[2] 王珂.基于改进的snake模型的图像边缘检测[D].华东师范大学[2023-11-19].DOI:10.7666/d.y1743028.