✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
1. 绪论
轨迹跟踪是移动机器人领域的一个基本问题,其目标是使机器人跟随预定的轨迹运动。传统上,轨迹跟踪问题通常通过比例-积分-微分(PID)控制或状态反馈控制来解决。然而,这些方法通常需要对机器人模型有精确的了解,并且在面对不确定性和干扰时鲁棒性较差。
近年来,模型预测控制(MPC)算法在轨迹跟踪领域得到了广泛的应用。MPC算法是一种基于模型的控制方法,它通过预测未来一段时间的状态和控制输入,然后根据预测结果来计算当前最优的控制输入。MPC算法具有鲁棒性好、易于实现等优点,因此非常适合解决轨迹跟踪问题。
2. MPC算法的基本原理
MPC算法的基本原理如图1所示。MPC算法首先需要建立机器人的模型,然后根据模型预测未来一段时间的状态和控制输入。接下来,MPC算法根据预测结果来计算当前最优的控制输入。最后,MPC算法将当前最优的控制输入施加到机器人上,并重复上述过程。
3. MPC算法求解轨迹跟踪最优控制问题
为了使用MPC算法求解轨迹跟踪最优控制问题,我们需要首先建立机器人的模型。机器人的模型可以是动力学模型或运动学模型。动力学模型考虑了机器人的质量、惯量和摩擦等因素,而运动学模型只考虑了机器人的位置和速度等因素。
建立了机器人的模型之后,我们就可以开始预测未来一段时间的状态和控制输入。预测时,我们需要考虑机器人的初始状态、目标轨迹和控制输入。预测可以使用数值积分法或解析法来实现。
预测完成后,我们就可以根据预测结果来计算当前最优的控制输入。计算最优控制输入时,我们需要考虑预测的状态和控制输入与目标轨迹之间的误差。误差越小,则控制输入越优。
计算出最优控制输入之后,我们就可以将最优控制输入施加到机器人上,并重复上述过程。通过不断地预测、计算和施加最优控制输入,机器人最终将跟随目标轨迹运动。
📣 部分代码
function dxdt = singleTrackStateFnc(x,u)
% vy: x(1), psi: x(2), psid: x(3), px: x(4), py: x(5)
m = 1555; % mass of the vehicle
theta = 2491; % Inertia of the vehicle
lf = 1.354; % length from front tyre to c.g.
lr = 1.372; % length from rear tyre to c.g.
vxft = u(2) * cos(u(1)) + sin(u(1)) * (x(1) + lf * x(3));
vyft = -u(2) * sin(u(1)) + cos(u(1)) * (x(1) + lf * x(3));
alphaf = -atan2(vyft, vxft);
alphar = -atan2(x(1) - lr * x(3), u(2));
dxdt = zeros(5,1);
dxdt(1) = (-m * u(2) * x(3) + magicFormula(alphaf) * cos(u(1)) + magicFormula(alphar)) / m;
dxdt(2) = x(3);
dxdt(3) = (lf * magicFormula(alphaf) * cos(u(1)) - lr * magicFormula(alphar)) / theta;
dxdt(4) = u(2) * cos(x(2)) - x(1) * sin(x(2));
dxdt(5) = x(1) * cos(x(2)) + u(2) * sin(x(2));
end
⛳️ 运行结果
4. MPC算法的优点和缺点
MPC算法具有鲁棒性好、易于实现等优点,因此非常适合解决轨迹跟踪问题。然而,MPC算法也存在一些缺点,例如计算量大、需要对机器人模型有精确的了解等。
5. 结论
MPC算法是一种基于模型的控制方法,它通过预测未来一段时间的状态和控制输入,然后根据预测结果来计算当前最优的控制输入。MPC算法具有鲁棒性好、易于实现等优点,因此非常适合解决轨迹跟踪问题。然而,MPC算法也存在一些缺点,例如计算量大、需要对机器人模型有精确的了解等。
🔗 参考文献
[1] 谭仲清.基于优化的ACO轨迹跟踪控制算法研究[D].湖南大学,2020.
[2] 刘振.应用于嵌入式系统的快速模型预测控制算法研究[D].浙江大学,2018.
[3] 刘振.应用于嵌入式系统的快速模型预测控制算法研究[D].浙江大学[2024-01-12].