【EVO-TCN-Multihead-Attention预测】基于能量谷算法优化时间卷积网络结合多头注意力机制实现电力负荷预测附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

🔥 内容介绍

摘要

电力负荷预测在电力系统运行中至关重要。本文提出了一种基于能量谷算法优化时间卷积网络结合多头注意力机制(EVO-TCN-Multihead-Attention)的电力负荷预测方法。该方法利用能量谷算法优化TCN网络的超参数,提高网络的预测精度。同时,引入多头注意力机制,增强网络对长期依赖关系的建模能力。实验证明,所提出的方法在多个电力负荷数据集上取得了优异的预测性能。

引言

电力负荷预测是电力系统运行中的关键技术,为电网调度、安全稳定运行提供重要支撑。近年来,随着深度学习技术的发展,基于深度学习的电力负荷预测方法取得了显著进展。

时间卷积网络(TCN)是一种专门用于处理时序数据的深度学习模型。TCN通过引入因果卷积操作,能够有效地捕捉时序数据的依赖关系。然而,TCN的超参数对预测精度有较大影响,需要进行精细的调优。

多头注意力机制是一种注意力机制,能够同时关注输入序列的不同部分。通过引入多头注意力机制,TCN可以更好地建模时序数据的长期依赖关系。

方法

能量谷算法优化TCN超参数

能量谷算法是一种基于种群的优化算法,具有较强的全局搜索能力。本文利用能量谷算法优化TCN的超参数,包括卷积核大小、卷积层数、残差连接数量等。

能量谷算法的具体优化过程如下:

  1. 初始化种群,每个个体代表一组TCN超参数。

  2. 评估每个个体的适应度,适应度函数为TCN模型在验证集上的预测精度。

  3. 根据适应度值选择父代个体,并进行交叉和变异操作生成子代个体。

  4. 重复步骤2-3,直到达到终止条件(如最大迭代次数或适应度值不再改善)。

多头注意力机制

多头注意力机制的计算过程如下:

  1. 将输入序列Q、K、V分别投影到多个不同的子空间,得到多个注意力头。

  2. 计算每个注意力头中的注意力权重,表示每个输入元素对输出元素的重要性。

  3. 将注意力权重加权求和,得到输出元素。

通过引入多头注意力机制,TCN可以同时关注输入序列的不同部分,增强对长期依赖关系的建模能力。

EVO-TCN-Multihead-Attention模型

本文提出的EVO-TCN-Multihead-Attention模型由以下部分组成:

  1. **能量谷算法优化TCN网络:**利用能量谷算法优化TCN的超参数,提高网络的预测精度。

  2. **多头注意力机制:**引入多头注意力机制,增强网络对长期依赖关系的建模能力。

  3. **预测层:**使用全连接层对TCN输出进行预测。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行tic% restoredefaultpath%%  读取数据res = xlsread('数据集.xlsx');%% 划分训练集和测试集%P_train = res(1: 250, 1: 12)';T_train = res(1: 250, 13)';M = size(P_train, 2);P_test = res(251: end, 1: 12)';T_test = res(251: end, 13)';N = size(P_test, 2);num_dim = size(P_train, 1);               % 特征维度num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)                              % 类别数(Excel最后一列放类别)%%  数据转置% P_train = P_train'; P_test = P_test';% T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数M = size(P_train, 2);N = size(P_test , 2);%%  数据归一化[P_train, ps_input] = mapminmax(P_train, 0, 1);P_test  = mapminmax('apply', P_test, ps_input);

⛳️ 运行结果

评价指标

本文使用以下评价指标评估预测性能:

  • 均方根误差(RMSE)

  • 平均绝对误差(MAE)

  • 最大绝对误差(MAE)

实验结果

实验结果表明,EVO-TCN-Multihead-Attention模型在两个数据集上均取得了优异的预测性能。与其他基准模型相比,EVO-TCN-Multihead-Attention模型的RMSE、MAE和MAE均有显著降低。

结论

本文提出了一种基于能量谷算法优化时间卷积网络结合多头注意力机制的电力负荷预测方法。该方法利用能量谷算法优化TCN网络的超参数,提高网络的预测精度。同时,引入多头注意力机制,增强网络对长期依赖关系的建模能力。实验证明,所提出的方法在多个电力负荷数据集上取得了优异的预测性能。

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

  • 26
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
将多尺度卷积(MSC)、时序卷积网络TCN)和多头注意力机制Multi-Head Attention结合用于时间序列预测可以带来一些优势: 1. 捕捉多尺度特征:多尺度卷积可以在不同尺度上感知时间序列数据的特征,而TCN可以处理长期依赖性。多头注意力机制可以在不同的注意力头上关注不同的特征子空间。通过结合这三个方法,可以充分利用它们各自的优势,更全面地捕捉时间序列数据中的多尺度特征。 2. 强化时间依赖建模:TCN多头注意力机制在建模时间序列数据的时间依赖关系方面具有优势。TCN通过使用卷积操作来捕捉长期依赖性,避免了传统循环神经网络中的梯度消失或梯度爆炸问题。多头注意力机制可以通过自注意力机制在序列中建模长距离的依赖关系。将它们与多尺度卷积结合,可以更好地处理时间序列数据中的时间依赖性,并提高模型的预测性能。 3. 增强特征表达能力:多头注意力机制能够对输入序列的不同位置进行自适应加权,从而更好地聚焦于重要的时间步。通过多头注意力机制,模型可以同时关注多个特征子空间,提高特征表达的丰富性。结合多尺度卷积TCN,可以从多个角度和尺度提取特征,并通过多头注意力机制加权融合这些特征,进一步提升特征表达能力。 4. 提高模型的泛化能力:通过结合多个不同的模型组件,如MSC、TCN多头注意力机制,可以使模型具有更大的灵活性和泛化能力。这种组合能够同时考虑时间序列数据的多个方面,并充分利用它们之间的相互作用。这有助于模型更好地适应不同类型、长度和复杂性的时间序列数据,提高预测性能。 综上所述,将多尺度卷积TCN多头注意力机制结合应用于时间序列预测任务,可以充分利用它们各自的优势,增强时间序列数据的特征表达能力、时间依赖建模能力和泛化能力,从而提高预测性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值