✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
简介
此项目涉及衍射光栅的设计和优化,以实现所需的输出目标。我们使用模拟退火过程来实现最佳设计。
对于衍射光栅设计,我们将光栅的单位像元(即光栅的周期)视为要编码的区域。
这种编码在相位域中完成。传统上有两种方法可以做到这一点:根据像元内的转换点在两个级别之间交替相位,或在像元内创建具有离散相位值的矩形像素阵列。在这个项目中,我们将重点放在通过优化这个矩形相位掩模来输出我们所需的靶标模式。然后可以通过将相位像素分配给物理参数(通常是蚀刻深度)将此相位掩模映射到物理光栅像元。
模拟退火
模拟退火是一种特征明确的随机优化算法,大致受冷却金属结晶的启发。熔融金属的缓慢冷却强制形成高度有序的晶体结构,从而产生更坚固(即最佳)的材料。另一方面,快速冷却会导致不规则、脆性的材料。该算法通过概率变量 t 对此概念进行了量化,该变量类似地称为冷却速率。此变量与优点函数(定义设计“好”程度的度量,即与目标匹配)一起驱动算法。t 是接受增加优点函数的变化的概率的度量。降低优点函数(表示更优化的设计)的变化被接受。随着迭代次数的增加,一些增加优点函数的变化也被接受,但是随着算法的进行,这个概率会随着 t 的减小而减小(就像冷却金属中的温度降低结晶变化的可能性一样)。算法会一直持续到满足最大迭代次数或达到最佳优点函数值。
在此实现中,初始随机相位掩模被分配一个单位振幅。获取掩模的傅里叶变换以获得输出波前。找到波前的强度并计算输出强度和所需靶标模式之间的均方误差 (MSE)。MSE 作为系统的优点函数。对于每次迭代,初始相位掩模都会随机扰动。如果 MSE 低于前一个值,则接受更改。如果没有,则随机选择一个值(均匀),如果该值小于 t,则接受更改。如果没有,则选择一个新的扰动。理想情况下,此过程会一直重复,直到 MSE 值收敛,从而达到最佳设计。
结果
针对各种模式实施了设计优化。第一个目标模式是使用 generate_target() 在 MATLAB 中生成的,其他目标模式是使用绘图软件创建的,然后转换为图像,再转换为二进制矩阵。
📣 部分代码
function phi_n = PhaseTruncate(phi,levels)
%Maps continuous phase values of -pi to pi to quantized values of
%0 to 2*pi (where levels is the number of quantized values between 0 to
%2*pi)
phi(phi < 0) = phi(phi < 0) + 2*pi;
phi(phi > 2*pi) = rem(phi(phi > 2*pi),2*pi);
round_phi = [0:2*pi/levels:2*pi];
phi_n = interp1(round_phi,round_phi,phi,'nearest');
phi_n(phi_n == 2*pi) = 0;
end
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类