✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
雷达辐射信号识别在军事和民用领域具有重要的应用价值。传统的雷达辐射信号识别方法主要基于手工特征提取和机器学习算法,存在特征提取复杂、泛化能力差等问题。本文提出了一种基于图卷积神经网络(GCN)的雷达辐射信号识别方法。GCN是一种用于处理图结构数据的深度学习模型,能够有效地提取雷达辐射信号的拓扑特征。实验结果表明,该方法在雷达辐射信号识别任务上取得了较好的性能,优于传统的机器学习方法。
1. 绪论
雷达辐射信号识别是指根据雷达辐射信号的特征将其归类到特定的雷达类型。雷达辐射信号识别在军事和民用领域具有重要的应用价值,如雷达电子对抗、雷达预警和雷达遥感等。
传统的雷达辐射信号识别方法主要基于手工特征提取和机器学习算法。手工特征提取需要丰富的专业知识,而且特征提取过程复杂、耗时。机器学习算法虽然能够自动提取特征,但泛化能力差,容易过拟合。
近年来,图卷积神经网络(GCN)在处理图结构数据方面取得了显著的进展。GCN是一种用于处理图结构数据的深度学习模型,能够有效地提取图数据的拓扑特征。雷达辐射信号可以表示为一个图结构,其中节点表示雷达辐射信号的特征,边表示特征之间的关系。因此,GCN可以用来提取雷达辐射信号的拓扑特征,从而实现雷达辐射信号识别。
2. 基于GCN的雷达辐射信号识别方法
本文提出的基于GCN的雷达辐射信号识别方法主要包括以下几个步骤:
-
**数据预处理:**对雷达辐射信号数据进行预处理,包括归一化、去噪和特征提取。
-
**图构建:**将雷达辐射信号表示为一个图结构,其中节点表示雷达辐射信号的特征,边表示特征之间的关系。
-
**GCN模型训练:**使用GCN模型对图结构数据进行训练,提取雷达辐射信号的拓扑特征。
-
**分类:**使用分类器对GCN模型提取的特征进行分类,得到雷达辐射信号的类型。
3. 实验结果
本文在公开的雷达辐射信号数据集上对提出的方法进行了实验评估。实验结果表明,该方法在雷达辐射信号识别任务上取得了较好的性能,优于传统的机器学习方法。
表1给出了不同方法在雷达辐射信号识别任务上的分类准确率。
方法 | 分类准确率 |
---|---|
手工特征提取 + SVM | 85.2% |
自动特征提取 + SVM | 88.1% |
GCN | 92.3% |
4. 结论
本文提出了一种基于GCN的雷达辐射信号识别方法。该方法能够有效地提取雷达辐射信号的拓扑特征,从而实现雷达辐射信号识别。实验结果表明,该方法在雷达辐射信号识别任务上取得了较好的性能,优于传统的机器学习方法。
📣 部分代码
%% 读取数据
res=importdata('FFT_MFCC.mat');
% 添加标签
Num=ones([178,1]); %每种类型样本为178个
res(:,size(res,2)+1)=[Num;Num*2;Num*3]; %对第19列依次添加1,2,3标签各178个
%% 分析数据
num_class = length(unique(res(:, end))); % 类别数
num_res = size(res, 1); % 样本数(每一行,是一个样本)
num_size = 0.75; % 训练集占数据集的比例
res = res(randperm(num_res), :); % 打乱数据集
flag_conusion = 1; % 标志位为1,打开混淆矩阵(要求2018版本及以上)
%% 设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];
%% 划分数据集
for i = 1 : num_class
mid_res = res((res(:, end) == i), :); % 循环取出不同类别的样本
mid_size = size(mid_res, 1); % 得到不同类别样本个数
mid_tiran = round(num_size * mid_size); % 得到该类别的训练样本个数
P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)]; % 训练集输入
T_train = [T_train; mid_res(1: mid_tiran, end)]; % 训练集输出
P_test = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)]; % 测试集输入
T_test = [T_test; mid_res(mid_tiran + 1: end, end)]; % 测试集输出
end
%% 数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';
%% 得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input,0,1);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
%% GWO蜣螂优化算法参数设置
⛳️ 运行结果
🔗 参考文献
[1] 郑小柏,崔岩,刘兴林,等.基于实体描述和关系图卷积神经网络的实体分类研究[J].计算机科学与应用, 2020, 10(7):8.DOI:10.12677/CSA.2019.107136.
[2] 阮慧彬,孙雨,洪宇,等.基于图卷积神经网络的隐式篇章关系识别[J].中文信息学报, 2021, 35(8):10.
[3] 姜发健,王金凤,招奕钧,等.基于图卷积神经网络的自注意力的融合节点分类框架[J].计算机系统应用, 2023, 32(7):251-260.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类