毫米波雷达如何实现目标分类——神经网络基础

本文介绍了使用神经网络进行毫米波雷达目标分类的方法,包括算法理论、激活函数的选择(ReLU、Sigmoid、Softmax)、参数初始化策略以及MATLAB的基本实现步骤。通过合适的特征选取和网络设计,可以提升分类准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、前言

二、算法理论

三、激活函数

四、参数初始化

五、基本实现(matlab)

六、处理流程


一、前言

        毫米波雷达以高适应性低识别力著称,但选择适合的分类算法依然可以达到85%甚至95%以上的准确率。一般工程做选择距离信噪比经验公式来做类型判断;置信度通过信噪比(反射强度)、跟踪命中次数及丢失次数来计算。

        之前工程中看到SVM与NN相关分类准确度比较,NN超平面学习效果比SVM提高的多。NN在分类上仍少不了传统特征分析与选取,神经元个数,层数,激活函数、损失函数设计,学习率等参数的调整。本篇基于西瓜书matlab实现最基本的NN,特征的选择。

二、算法理论

BP网络及算法如下所示:

 5.3到5.17的公式可以根据南瓜书看具体推导,这里我们可以先只关注结论即可,误差逆传播算法如下:

三、激活函数

激活函数就是在原来的线性组合的基础上加上非线性函数,让模型的表达能力更强。

ReLU(Rectified Linear Unit) - 用于隐层神经元输出,Relu实质就是个取最大值的函数

f(x) = max(0,x)。

优点:

输入是负值的情况下,它会输出0,那么神经元就不会被激活。这意味着同一时间只有部分神经元会被激活,从而使得网络很稀疏,进而对计算来说是非常有效率的。

缺点:神经元很容易“死亡”,因此需要设置较小的学习率

 Sigmoid - 用于隐层神经元输出,对于二分类的神经网络来说,最后一层的激活函数一般都是sigmoid函数。

 

 x是输入量,w是权重,b是偏移量(bias),权重w使得sigmoid函数可以调整其倾斜程度(上下),偏移量b不会改变曲线大体形状(左右)

小结:对比sigmoid类函数主要变化是&

### 毫米波雷达图像目标检测的技术、方法与应用 #### 技术背景与发展 随着科技进步,毫米波雷达技术已在多个领域展现其独特优势。尤其在无人驾驶汽车和安全监控方面,该技术的应用日益广泛[^1]。 #### 数据获取方式 毫米波雷达图像的获取依赖于特定硬件设备的支持。这些设备能够发射并接收反射回来的电磁波信号,进而形成可用于后续处理的数据集。相较于传统视觉传感器如RGB相机或红外相机,毫米波雷达能够在恶劣天气条件下保持较高的工作稳定性,并且不受光照条件的影响[^2]。 #### 关键技术手段 针对毫米波雷达图像的特点——即低信噪比、低对比度等问题,研究人员提出了多种解决方案来提升小目标识别效果: - **预处理阶段**:采用先进的滤波算法去除噪声干扰; - **特征增强环节**:引入卷积神经网络(CNN),特别是那些经过优化设计用于处理此类特殊数据类型的模型架构; - **后端决策模块**:结合YOLOX等高效实时的目标检测框架完成最终的任务执行[^5]; 此外,在实际部署过程中还需要考虑角度估计精度等因素,这涉及到对阵列天线接收到的不同位置处回波信号之间相位差异的精确测量[^4]。 #### 实际应用场景举例 具体来说,利用上述提到的各项关键技术可以实现如下功能: - 自动驾驶车辆中的障碍物感知; - 工业环境下的电力设施巡检(比如高压电线监测); - 安防系统里的人体行为分析等等[^3]。 ```python import torch from yolox.exp import get_exp_by_name, ExpBuilder exp = get_exp_by_name('yolox-m') model = exp.get_model() checkpoint = torch.load("path_to_your_checkpoint.pth", map_location="cpu") model.load_state_dict(checkpoint["model"]) model.eval() def detect_objects(image_tensor): with torch.no_grad(): outputs = model(image_tensor) return postprocess(outputs) # 假设image_tensor是从毫米波雷达获取到的一帧图像转换而成的张量形式 detected_results = detect_objects(image_tensor) print(detected_results) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值