✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
无人船编队控制技术是近年来海洋工程领域的研究热点之一,其在海洋环境监测、资源勘探、海上搜救等方面具有广阔的应用前景。领导者-跟随者模型是一种经典的编队控制方法,它将编队中的无人船分为领导者和跟随者,领导者负责制定航行路线和速度,跟随者则根据领导者的信息进行自主航行。本文将深入探讨基于领导者-跟随者模型的无人船编队控制方法,分析其原理、优缺点以及应用前景。
1. 领导者-跟随者模型简介
领导者-跟随者模型是一种基于行为的编队控制方法,它将编队中的无人船分为领导者和跟随者。领导者负责制定航行路线和速度,并将其信息广播给跟随者。跟随者则根据领导者的信息进行自主航行,保持与领导者之间的相对位置和航向。
领导者-跟随者模型具有以下优点:
-
结构简单,易于实现。
-
鲁棒性强,对环境变化和传感器噪声不敏感。
-
可扩展性好,适用于不同规模的无人船编队。
2. 基于领导者-跟随者模型的无人船编队控制方法
基于领导者-跟随者模型的无人船编队控制方法主要包括以下几个步骤:
-
领导者制定航行路线和速度。
-
领导者将航行信息广播给跟随者。
-
跟随者根据领导者的信息进行自主航行。
-
跟随者根据实际情况调整航行路线和速度。
在实际应用中,可以根据不同的应用场景对领导者-跟随者模型进行改进和扩展。例如,可以引入多领导者模型,以提高编队的鲁棒性和可扩展性。也可以引入虚拟领导者模型,以简化编队控制的实现。
3. 基于领导者-跟随者模型的无人船编队控制方法的优缺点
基于领导者-跟随者模型的无人船编队控制方法具有以下优点:
-
结构简单,易于实现。
-
鲁棒性强,对环境变化和传感器噪声不敏感。
-
可扩展性好,适用于不同规模的无人船编队。
但是,该方法也存在一些缺点:
-
领导者故障会导致整个编队瘫痪。
-
领导者与跟随者之间的通信延迟会影响编队的控制精度。
-
领导者需要具备较高的自主航行能力。
4. 基于领导者-跟随者模型的无人船编队控制方法的应用前景
基于领导者-跟随者模型的无人船编队控制方法具有广阔的应用前景,例如:
-
海洋环境监测:无人船编队可以协同工作,对海洋环境进行大范围的监测。
-
资源勘探:无人船编队可以协同工作,对海底资源进行勘探。
-
海上搜救:无人船编队可以协同工作,对海上遇险人员进行搜救。
5. 结论
基于领导者-跟随者模型的无人船编队控制方法是一种简单、鲁棒、可扩展的编队控制方法,具有广阔的应用前景。随着无人船技术的不断发展,基于领导者-跟随者模型的无人船编队控制方法将在海洋工程领域发挥越来越重要的作用。
📣 部分代码
clear all;
clc;
dt=1;
m11=120000;m12=m11;m13=m11;%惯性分量,第1、2、3艘船在x轴上的惯性分量相等
m21=217900;m22=m21;m23=m21;%y
m31=63600000;m32=m31;m33=m31;%z
d11=21500;d12=d11;d13=d11;%阻尼分量,第1、2、3艘船在x轴上的阻尼分量相等
d21=117000;d22=d21;d23=d21;%y
d31=8020000;d32=d31;d33=d31;%z
a1=m11/m21;b1=d21/m21;%阿尔法和贝塔
a2=m12/m22;b2=d22/m22;
a3=m13/m23;b3=d23/m23;
%来自李雅普诺夫函数的若干个k值
k1=0.03;k2=0.03;k3=0;k4=0;k5=0.3;k6=0.2;k7=0.05;%不能参考张乾硕士论文
%领航者初始位置
X1=zeros(1,101);Y1=zeros(1,101);
X1(1,1)=0;Y1(1,1)=0;
Phi1=zeros(1,101);Phi1(1,1)=0;
v1=0;
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类