✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
图像融合是计算机视觉领域的重要研究方向,其目标是将多幅图像信息融合成一幅更清晰、更完整、更具信息量的图像。近年来,随着深度学习技术的快速发展,基于卷积稀疏表示的图像融合方法取得了显著的成果。
卷积稀疏表示是一种将图像分解为稀疏系数和字典的表示方法。在图像融合中,可以将多幅图像分解为稀疏系数和字典,然后将稀疏系数进行融合,最后通过字典重建融合后的图像。这种方法可以有效地保留图像的细节信息,并抑制噪声和伪影。
目前,基于卷积稀疏表示的图像融合方法主要分为两类:基于深度学习的字典学习方法和基于稀疏表示的融合方法。
基于深度学习的字典学习方法利用深度神经网络学习图像的字典,并使用学习到的字典进行图像融合。这种方法可以学习到更具代表性的字典,从而提高图像融合的质量。
基于稀疏表示的融合方法将多幅图像分解为稀疏系数,然后将稀疏系数进行融合。这种方法可以有效地保留图像的细节信息,并抑制噪声和伪影。
基于卷积稀疏表示的图像融合方法具有以下优点:
-
可以有效地保留图像的细节信息;
-
可以抑制噪声和伪影;
-
可以提高图像融合的质量。
近年来,基于卷积稀疏表示的图像融合方法取得了显著的成果,并在医学图像融合、遥感图像融合等领域得到了广泛的应用。
总而言之,基于卷积稀疏表示的图像融合方法是一种有效且实用的图像融合方法,具有广阔的应用前景。
📣 部分代码
function checkopt(inopt, dfopt)
% checkopt -- Check options structure for unrecognized fields
%
% Usage:
% checkopt(inopt, dfopt)
%
% Input:
% inopt Input options structure
% dfopt Default options structure
%
%
% Author: Brendt Wohlberg <brendt@lanl.gov> Modified: 2015-06-17
%
% This file is part of the SPORCO library. Details of the copyright
% and user license can be found in the 'License' file distributed with
% the library.
if ~isempty(inopt) && (~isfield(inopt,'NoOptionCheck') || ~inopt.NoOptionCheck),
ifnc = fieldnames(inopt);
for k = 1:length(ifnc),
ifn = ifnc{k};
if ~strcmp(ifn, 'NoOptionCheck') && ~isfield(dfopt, ifn),
warning('SPORCO:UnknownOption', 'Unknown option field %s', ifn);
end
end
end
return
⛳️ 运行结果
🔗 参考文献
[1]王丽芳,窦杰亮,秦品乐,等.双重字典学习与自适应PCNN相结合的医学图像融合[J].中国图象图形学报, 2019(9):16.DOI:CNKI:SUN:ZGTB.0.2019-09-017.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类