✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
弹道学是一门研究物体在重力作用下运动轨迹的学科,主要应用于军事、航空航天和体育等领域。它涉及到发射物体的速度、角度、质量以及地球重力场等因素对物体飞行路径的影响。在导弹、炮弹等飞行器的设计中,弹道学是至关重要的,因为它帮助计算出最优的发射参数,确保目标的精确命中。
制导方法则是用来控制飞行器飞行轨迹的技术,确保其按照预定的目标路径或策略移动。现代制导技术通常分为以下几个类型:
-
机械制导:早期的制导系统,如陀螺稳定制导,依赖于机械反馈来维持稳定的航向。
-
自主制导:使用传感器(如惯性测量单元和GPS)来获取实时位置信息,然后进行导航和调整。
-
寻的制导:利用雷达、激光或红外等探测设备寻找并跟踪目标,使武器自行调整方向。
-
地形匹配制导:结合地形数据,使导弹避开障碍物,更精准地接近目标。
-
GPS制导:全球定位系统的应用,为飞行器提供精确的位置信息,常用于低成本的导弹和无人机。
-
智能制导:结合人工智能技术,如机器学习,使制导系统具备自我学习和适应能力。
⛳️ 运行结果
🔗 参考文献
[1] 王小刚 .-.远程火箭弹道学及优化方法[M].哈尔滨工业大学出版社,2022.
[2] 何斌,芮筱亭,于海龙,等.火箭弹道学发动机推力模拟方法[J].火力与指挥控制, 2006, 31(8):2.DOI:10.3969/j.issn.1002-0640.2006.08.019.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类