✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
轴承作为机械设备的关键部件,其故障诊断对于设备的正常运行和安全生产至关重要。近年来,深度学习技术在故障诊断领域取得了显著进展,其中双向时间卷积神经网络(BiTCN)因其能够有效提取时间序列数据中的双向特征而备受关注。然而,BiTCN模型的性能受超参数选择的影响很大,而传统的手动调参方法效率低下且难以找到最优参数组合。针对这一问题,本文提出了一种基于飞蛾扑火优化算法(MFO)优化的BiTCN模型,用于实现轴承数据故障诊断。该方法利用MFO算法自动搜索BiTCN模型的最佳超参数,从而提高模型的准确性和泛化能力。实验结果表明,该方法在轴承故障诊断任务中取得了优于传统方法的性能,验证了其有效性和可靠性。
引言
轴承作为机械设备的重要组成部分,其故障会导致设备性能下降、工作效率降低甚至停机,造成巨大的经济损失和安全隐患。因此,及时准确地诊断轴承故障对于保证设备的正常运行和安全生产至关重要。
近年来,随着深度学习技术的快速发展,基于深度学习的故障诊断方法逐渐成为研究热点。其中,卷积神经网络(CNN)因其强大的特征提取能力而被广泛应用于故障诊断领域。然而,传统的CNN模型主要针对图像等空间数据设计,无法充分提取时间序列数据的时序特征。为了解决这一问题,学者们提出了时间卷积神经网络(TCN),能够有效提取时间序列数据中的局部特征。
双向时间卷积神经网络(BiTCN)是在TCN基础上改进的一种网络结构,它能够同时学习时间序列数据的正向和反向信息,从而更全面地提取数据的特征。BiTCN模型在轴承故障诊断中表现出良好的性能,然而,其性能受超参数选择的影响很大。传统的手动调参方法效率低下,难以找到最优的参数组合,限制了BiTCN模型的实际应用。
为了解决上述问题,本文提出了一种基于飞蛾扑火优化算法(MFO)优化的BiTCN模型,用于实现轴承数据故障诊断。MFO算法是一种新型的元启发式优化算法,具有全局搜索能力强、收敛速度快等优点,适用于优化神经网络模型的超参数。
方法
1. 双向时间卷积神经网络(BiTCN)
BiTCN模型是在TCN的基础上,加入了反向时间卷积层,能够同时提取时间序列数据的正向和反向信息。BiTCN模型的结构如图1所示,它主要由以下几个部分组成:
3. 基于MFO优化BiTCN模型的故障诊断方法
本文提出的方法利用MFO算法优化BiTCN模型的超参数,包括卷积核大小、卷积层数量、池化层大小等。具体步骤如下:
- 输入层:接收轴承振动信号数据。
- 卷积层:使用多个时间卷积核对输入数据进行特征提取,提取数据的局部特征。
- 池化层:对卷积层输出的特征进行降维,减少模型参数,提高训练速度。
- 双向时间卷积层:使用两个时间卷积核分别对输入数据进行正向和反向卷积操作,提取数据的双向特征。
- 全连接层:对双向时间卷积层的输出进行线性变换,并将结果映射到不同类别。
- 输出层:输出轴承故障类型的概率。
2. 飞蛾扑火优化算法(MFO)
MFO算法是一种模拟飞蛾趋光行为的元启发式优化算法。该算法将优化问题转化为飞蛾寻找光源的过程,通过不断更新飞蛾的位置,最终找到最优解。MFO算法的主要步骤如下:
- 初始化飞蛾种群,随机生成每个飞蛾的初始位置。
- 计算每个飞蛾的适应度值,即飞蛾到光源的距离。
- 更新飞蛾的位置,根据飞蛾到光源的距离和飞蛾的移动方向调整飞蛾的位置。
- 判断是否达到停止条件,如果达到停止条件则结束迭代,否则重复步骤2-3。
- 准备轴承振动信号数据,并将其分为训练集和测试集。
- 初始化MFO算法,设置种群规模、迭代次数等参数。
- 利用MFO算法搜索BiTCN模型的最佳超参数。
- 使用训练集训练BiTCN模型,并使用测试集评估模型性能。
- 本文提出了一种基于飞蛾扑火优化算法MFO优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断的方法。该方法利用MFO算法自动搜索BiTCN模型的最佳超参数,提高了模型的准确性和泛化能力。实验结果表明,该方法在轴承故障诊断任务中取得了优于传统方法的性能,验证了其有效性和可靠性。未来,将进一步研究改进MFO算法,提高其优化效率,并探索将该方法应用于其他机械设备的故障诊断。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类