✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
轴承是机械设备中重要的核心部件,其故障会导致设备停机甚至安全事故。近年来,深度学习技术在轴承故障诊断领域取得了显著进展,其中双向时间卷积神经网络(BiTCN)以其强大的时间特征提取能力表现出优异的性能。然而,BiTCN的超参数优化问题仍然是制约其应用的关键因素。本文提出了一种基于非洲秃鹫优化算法(AVOA)的双向时间卷积神经网络模型(AVOA-BiTCN)用于轴承故障诊断。AVOA算法是一种新型的元启发式优化算法,能够有效地解决复杂优化问题。在AVOA-BiTCN模型中,AVOA算法用于优化BiTCN的超参数,包括卷积核大小、池化层大小和学习率等。实验结果表明,与传统BiTCN模型相比,AVOA-BiTCN模型在轴承故障诊断任务中取得了更高的准确率和更强的泛化能力。
1. 引言
轴承是现代机械设备中不可或缺的部件,其状态对设备的正常运行至关重要。轴承故障通常表现为振动、噪声、温度升高等现象,如果不能及时发现和处理,会导致设备故障停机,甚至造成重大安全事故,造成巨大的经济损失。因此,准确及时地诊断轴承故障对于设备安全运行和维护具有重要意义。
近年来,随着深度学习技术的快速发展,其在轴承故障诊断领域得到了广泛的应用,并取得了显著的进展。与传统的故障诊断方法相比,深度学习方法能够自动提取数据中的特征,并建立更加复杂的模型来进行故障诊断。其中,卷积神经网络(CNN)因其强大的特征提取能力而成为轴承故障诊断领域的研究热点。
双向时间卷积神经网络(BiTCN)是CNN的一种变体,它可以同时从时间序列数据的两个方向提取特征,从而更好地捕捉数据的时序信息。然而,BiTCN的性能很大程度上取决于其超参数的设置,例如卷积核大小、池化层大小、学习率等。这些超参数的优化问题仍然是制约BiTCN应用的关键因素。
为了解决BiTCN的超参数优化问题,本文提出了一种基于非洲秃鹫优化算法(AVOA)的BiTCN模型(AVOA-BiTCN)。AVOA算法是一种新型的元启发式优化算法,它模拟了非洲秃鹫在觅食过程中的行为,具有收敛速度快、全局搜索能力强等优点。在AVOA-BiTCN模型中,AVOA算法用于优化BiTCN的超参数,以获得最佳的模型性能。
2. 相关工作
近年来,深度学习技术在轴承故障诊断领域取得了显著的进展,许多研究者提出了基于不同深度学习模型的故障诊断方法。
- 基于CNN的故障诊断: Wang等人[1]提出了一种基于CNN的轴承故障诊断方法,该方法利用CNN自动提取振动信号的特征,并将其用于故障分类。
- 基于RNN的故障诊断: He等人[2]提出了一种基于循环神经网络(RNN)的轴承故障诊断方法,该方法能够有效地捕捉振动信号的时序信息。
- 基于深度迁移学习的故障诊断: Liu等人[3]提出了一种基于深度迁移学习的轴承故障诊断方法,该方法利用已有的故障数据对模型进行预训练,然后将模型应用于新的故障诊断任务。
3. AVOA-BiTCN模型
3.1 BiTCN模型
BiTCN模型是一种深度学习模型,它由多个双向时间卷积层、池化层和全连接层组成。BiTCN模型能够同时从时间序列数据的两个方向提取特征,从而更好地捕捉数据的时序信息。
- 双向时间卷积层: 双向时间卷积层能够从时间序列数据的过去和未来两个方向提取特征,例如,向前卷积层提取过去的信息,向后卷积层提取未来信息。
- 池化层: 池化层能够减少特征数量,降低模型复杂度,并提高模型的鲁棒性。
- 全连接层: 全连接层将特征向量映射到类别标签,完成故障分类任务。
3.2 AVOA算法
AVOA算法是一种新型的元启发式优化算法,它模拟了非洲秃鹫在觅食过程中的行为。AVOA算法主要包含以下几个步骤:
- 初始化种群: 随机生成一组初始解,每个解代表一组BiTCN的超参数。
- 觅食阶段: 每个秃鹫根据自身位置和食物的信息进行搜索,以找到最佳的食物来源。
- 攻击阶段: 当秃鹫找到食物后,它们会攻击其他秃鹫,以获得更多的食物。
- 更新位置: 根据搜索和攻击阶段的结果,更新每个秃鹫的位置。
- 终止条件: 当满足预设的终止条件时,算法停止。
3.3 AVOA-BiTCN模型
AVOA-BiTCN模型将AVOA算法应用于BiTCN的超参数优化。AVOA算法通过优化BiTCN的超参数,例如卷积核大小、池化层大小和学习率等,以提高BiTCN模型的性能。
结论
本文提出了一种基于非洲秃鹫优化算法(AVOA)的双向时间卷积神经网络模型(AVOA-BiTCN)用于轴承故障诊断。AVOA算法能够有效地优化BiTCN的超参数,提高模型的性能。实验结果表明,AVOA-BiTCN模型在轴承故障诊断任务中取得了更高的准确率和更强的泛化能力。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类