✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
随着物联网技术的快速发展,无线网络控制系统(WNCS)在工业自动化、智能交通、医疗保健等领域得到了广泛的应用。WNCS 通常由传感器、执行器和控制器组成,它们通过无线信道进行数据交换。然而,无线信道不可避免地会受到噪声、干扰和衰落的影响,导致通信错误,进而影响控制系统的稳定性。因此,如何有效地降低 WNCS 的能量消耗,同时保证控制系统的稳定性,成为当前研究的热点。
本文针对 WNCS 的能量消耗问题进行研究,提出了一种基于平均驻留时间的优化方法,以实现能量消耗最小化。我们假设传感器和执行器可能由电池供电,并以控制系统稳定性不受通信错误影响为前提,研究了通信链路的能量消耗。
研究方法
我们的研究主要基于以下几点:
-
平均驻留时间(ADT)理论: ADT 理论可以用于分析切换系统,其稳定性取决于切换频率和每个子系统自身的稳定性。我们将 WNCS 的通信过程视为一个切换系统,其中稳定和不稳定子系统分别对应于通信成功和失败的情况。
-
通信-控制联合设计: 传统的无线通信优化方法通常将通信和控制系统独立考虑,仅通过设定一个可靠性约束来控制通信错误率。而我们采用通信-控制联合设计的方法,将控制系统的稳定性与通信参数(发射功率和比特率)联系起来。
-
闭式解: 我们推导出与系统稳定性相关的最佳中断概率的闭式表达式。该表达式被用作约束条件,以优化发射功率和比特率,从而最小化能量消耗。
主要结果
我们的研究结果表明,与传统的无线通信优化方法相比,基于平均驻留时间的优化方法能够显著降低 WNCS 的能量消耗。这是因为我们的方法考虑了控制系统的稳定性,并通过调整通信参数来确保其稳定运行。
关键词: 无线网络控制系统,平均驻留时间,能量消耗
结论
本文提出了一种基于平均驻留时间的 WNCS 能量消耗最小化方法。该方法通过通信-控制联合设计,并利用 ADT 理论分析系统稳定性,有效地降低了能量消耗,同时保证了控制系统的稳定性。未来研究可以考虑更复杂的 WNCS 架构和更实际的通信信道模型,以进一步完善该方法。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类