【多机器人路径规划】基于多策略自适应差分正余弦算法实现多机器人路径规划研究附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

摘要: 多机器人路径规划 (Multi-Robot Path Planning, MRPP) 作为机器人领域的一个重要研究方向,旨在为多个机器人规划出一组安全、高效且无冲突的路径,以完成指定任务。本文针对传统算法在解决复杂环境下多机器人路径规划问题时存在的效率低、易陷入局部最优等不足,提出了一种基于多策略自适应差分正余弦算法 (Multi-Strategy Adaptive Differential Sine Cosine Algorithm, MSADSCA) 的新方法。该方法通过结合差分进化 (Differential Evolution, DE) 算法的全局搜索能力和正余弦算法 (Sine Cosine Algorithm, SCA) 的局部寻优能力,并引入自适应策略和多种搜索机制,有效提高了算法的收敛速度和全局寻优能力,最终实现了在复杂环境下多机器人高效、安全的路径规划。

关键词: 多机器人路径规划;差分正余弦算法;自适应策略;全局优化;局部优化

1. 引言

随着机器人技术的飞速发展,多机器人协同作业已成为诸多领域的关键技术,例如仓储物流、无人机编队、智能制造等。多机器人路径规划作为多机器人协同作业的基础,其目标是为多个机器人规划出各自的路径,使得它们能够在规定的时间内完成指定任务,同时避免碰撞和死锁等冲突。然而,多机器人路径规划问题是一个NP-hard问题,其计算复杂度随着机器人数量和环境复杂度的增加而急剧增长。传统的路径规划算法,如A*算法、Dijkstra算法等,在处理多机器人场景时,往往面临效率低下、易陷入局部最优解等问题。

近年来,基于群体智能的优化算法在解决复杂优化问题方面展现出巨大的潜力。差分进化算法 (DE) 凭借其强大的全局搜索能力,而正余弦算法 (SCA) 则具有良好的局部寻优能力。然而,单独使用DE或SCA算法并不能有效解决多机器人路径规划问题中存在的挑战。DE算法容易出现早熟收敛,而SCA算法的收敛速度相对较慢。因此,本文提出了一种结合DE和SCA优势,并引入自适应策略和多种搜索机制的多策略自适应差分正余弦算法 (MSADSCA),以提高多机器人路径规划的效率和全局寻优能力。

2. 算法设计

MSADSCA算法主要由以下几个模块构成:

2.1 差分进化算法 (DE)

DE算法通过不断迭代更新种群中的个体,最终逼近全局最优解。其核心在于利用差分向量来引导搜索方向,增强算法的全局探索能力。本文采用经典的DE/rand/1/bin策略,其更新公式为:

2.2 正余弦算法 (SCA)

SCA算法通过模拟正弦和余弦函数的周期性变化来调整搜索方向和步长,具有较强的局部寻优能力。其更新公式为:

2.3 自适应策略

为了平衡全局探索和局部开发,本文引入了自适应策略,动态调整DE和SCA的权重。权重根据算法迭代次数和当前最优解的改进程度进行调整,在算法初期,全局探索能力较强,DE的权重较高;随着迭代次数的增加,算法逐渐转向局部开发,SCA的权重逐渐提高。

2.4 多种搜索机制

为了进一步提高算法的效率,本文引入了多种搜索机制,包括:

  • 局部搜索: 在每次迭代结束后,对当前最优解进行局部搜索,以避免陷入局部最优。

  • 精英保留策略: 保留每一代的最优解,保证算法的收敛性。

  • 动态调整参数: 根据算法的收敛情况,动态调整算法参数(如缩放因子F),以提高算法的效率。

3. 实验结果与分析

本文在多个标准测试函数和实际的多机器人路径规划场景中对MSADSCA算法进行了测试,并与传统的DE算法、SCA算法以及其他改进算法进行了比较。实验结果表明,MSADSCA算法在收敛速度、寻优精度和鲁棒性方面均具有明显的优势,有效地解决了多机器人路径规划问题中存在的挑战。 具体的实验结果将以图表的形式呈现,并对实验结果进行详细的分析,包括收敛曲线、路径长度、计算时间等指标。

4. 结论与未来研究

本文提出了一种基于多策略自适应差分正余弦算法 (MSADSCA) 的多机器人路径规划方法。该方法通过结合DE和SCA算法的优势,并引入自适应策略和多种搜索机制,有效地提高了算法的收敛速度和全局寻优能力。实验结果验证了该方法的有效性。

未来研究将集中在以下几个方面:

  • 进一步提高算法的效率,使其能够处理更大规模的多机器人路径规划问题。

  • 考虑更复杂的机器人动力学模型和环境约束。

  • 将MSADSCA算法应用于更广泛的实际应用场景,例如无人机编队和仓储物流等。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值