【数据驱动】基于数据驱动的智能空调系统需求响应可控潜力评估研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

摘要:随着能源危机和环境问题的日益突出,需求响应(Demand Response, DR)作为一种有效的电力需求侧管理手段,受到了广泛关注。智能空调系统作为居民用电的重要组成部分,其需求响应潜力巨大。然而,对智能空调系统需求响应可控潜力的评估,传统方法依赖于大量的现场试验和模型假设,成本高昂且精度有限。本文旨在探讨基于数据驱动的方法,利用智能空调系统运行数据,对需求响应可控潜力进行评估,以期提高评估效率和准确性,为智能电网的优化调度和节能减排提供科学依据。

关键词:需求响应;智能空调;数据驱动;可控潜力;电力需求侧管理

1. 引言

在全球能源消耗日益增长的背景下,降低电力需求峰值、提高能源利用效率已成为亟待解决的问题。需求响应(DR)作为一种通过激励机制或价格信号引导用户调整用电行为,从而改变电力负荷曲线的策略,在缓解电力供需矛盾、降低系统运行成本、提高电网可靠性等方面具有重要意义。空调系统作为建筑物用电负荷的主要组成部分,尤其是在夏季高峰时段,对电力系统的稳定性构成严峻挑战。因此,挖掘智能空调系统的需求响应潜力,实现其可控运行,对于推动智能电网发展,实现节能减排目标具有重要战略意义。

传统的需求响应潜力评估方法,通常依赖于物理模型和统计模型。物理模型需要详细的空调系统参数和建筑物的热工特性,建模过程复杂且计算量大。统计模型则需要大量的现场试验数据,成本高昂且难以推广。近年来,随着物联网技术和数据分析技术的快速发展,智能空调系统积累了大量的运行数据,包括温度、湿度、能耗、开关状态等。这些数据为我们提供了利用数据驱动的方法评估需求响应可控潜力的可能性。

2. 文献综述

针对空调系统的需求响应研究,国内外学者已经进行了大量的探索。早期研究主要集中在基于规则的控制策略,例如设定温度上下限、限功率运行等,以实现削峰填谷的目的。这些方法简单易行,但往往忽略了用户的舒适度,容易引起用户的不满。随着优化控制理论的发展,基于模型预测控制(Model Predictive Control, MPC)的需求响应方法被广泛应用。MPC方法能够根据预测的负荷需求和电价信号,制定最优的控制策略,在满足用户舒适度要求的同时,实现节能降耗的目标。然而,MPC方法对模型的准确性要求较高,建模过程复杂。

近年来,基于机器学习和数据挖掘的需求响应方法逐渐兴起。这些方法利用历史数据训练模型,预测用户的用电行为,并根据预测结果制定相应的控制策略。例如,利用支持向量机(Support Vector Machine, SVM)预测用户的用电负荷,利用强化学习(Reinforcement Learning, RL)学习最优的控制策略。这些方法无需建立复杂的物理模型,具有良好的适应性和鲁棒性。

然而,现有研究主要集中在需求响应的策略制定和性能优化,对智能空调系统需求响应可控潜力的评估研究相对较少。现有研究大多基于仿真数据或者小规模的实验数据,缺乏对大规模实际数据的分析。此外,现有研究对可控潜力的定义和评估指标尚不统一,缺乏统一的评估标准。

3. 基于数据驱动的需求响应可控潜力评估方法

本文提出一种基于数据驱动的智能空调系统需求响应可控潜力评估方法,主要包括以下几个步骤:

3.1 数据采集与预处理

首先,需要从智能空调系统中采集大量的运行数据,包括温度、湿度、能耗、开关状态、用户设置等。这些数据可能存在缺失、异常或噪声,需要进行预处理,包括数据清洗、数据填充和数据平滑等。数据清洗主要去除重复数据和无效数据;数据填充主要采用插值法或平均值法填充缺失数据;数据平滑主要采用滑动平均法或卡尔曼滤波法去除噪声。

3.2 特征工程

特征工程是机器学习的关键步骤,选择合适的特征能够提高模型的预测精度。本文从以下几个方面提取特征:

  • 时间特征:

     包括时间戳、小时、星期、季节等,反映了用电负荷的周期性变化。

  • 温度特征:

     包括室内温度、室外温度、温差等,反映了空调系统的制冷需求。

  • 湿度特征:

     包括室内湿度、室外湿度等,影响空调系统的制冷效率。

  • 历史负荷特征:

     包括过去一段时间的用电负荷,反映了用户的用电习惯。

  • 用户设置特征:

     包括目标温度、风速、模式等,反映了用户的舒适度要求。

3.3 需求响应模型构建

本文采用机器学习方法构建需求响应模型,预测智能空调系统在不同需求响应策略下的负荷变化。常用的机器学习模型包括:

  • 线性回归模型:

     简单易行,适用于线性关系的数据。

  • 支持向量机(SVM):

     适用于高维数据,具有良好的泛化能力。

  • 随机森林(Random Forest):

     具有良好的鲁棒性和抗噪声能力。

  • 神经网络(Neural Network):

     能够学习复杂的非线性关系,预测精度高

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值