大模型应用实战3——开源大模型(以Qwen为例)实现多论对话功能

对于国内用户来说,一个比较稳定的下载和部署开源大模型的方法就是使用ModelScope的SDK进行下载,然后再Transformer库进行调用。在代码环境中,ollama则提供了openai API风格的大模型调用方法。在开启ollama服务情况下,我们只需要进一步在代码环境中安装openai库即可完成调用。目前都是用openai风格的api。

!pip install openai

from openai import OpenAI

client = OpenAI( 
             base_url='http://localhost:11434/v1/', 
             api_key='ollama',  # API key is required but ignored for local model 
         ) #实例化客户端

chat_completion = client.chat.completions.create( 
         messages=[ 
             {'role': 'user','content': '你好',} 
         ], 
         model='qwen:1.8b', 
     ) #发第一句话

看结果:chat_completion.choices[0] 

 Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content='你好!有什么我可以帮助你的吗?例如,你可以询问关于某个特定主题的信息或者提供一个问题或主题以供讨论。我期待着听到你的提问并为你提供相关信息。\\n', role='assistant', function_call=None, tool_calls=None)) 
 

由此,我们可编写一个多轮对话机器人

def run_chat_session(): 
         # 初始化客户端 
         client = OpenAI( 
             base_url='http://localhost:11434/v1/', 
             api_key='ollama',  # API key is required but ignored for local model 
         ) 
          
         # 初始化对话历史 
         chat_history = [] 
          
         # 启动对话循环 
         while True: 
             # 获取用户输入 
             user_input = input(\ 你: \ ) 
              
             # 检查是否退出对话 
             if user_input.lower() == 'exit': 
                 print(\ 退出对话。\ ) 
                 break 
              
             # 更新对话历史 
             chat_history.append({'role': 'user', 'content': user_input}) 
              
             # 调用模型获取回答 
             try: 
                 chat_completion = client.chat.completions.create( 
                     messages=chat_history, 
                     model='qwen:1.8b', 
                 ) 
                 # 获取最新回答,适当修改以适应对象属性 
                 model_response = chat_completion.choices[0].message.content 
                 print(\ AI: \ , model_response) 
                  
                 # 更新对话历史 
                 chat_history.append({'role': 'assistant', 'content': model_response}) 
             except Exception as e: 
                 print(\ 发生错误:\ , e) 
                 break 
   ]
  },

### 推荐用于 Cline 的大模型 对于希望在 Cline 中集成的大规模预训练模型,存在个选项可供选择。考虑到性能、功能以及社区支持等因素,以下是几个推荐的选择: #### OpenAI 和 Anthropic 商用模型 Cline 支持接入像 OpenAI 或者 Anthropic 提供的一系列高质量商业化的大型语言模型[^1]。这类模型通常经过广泛的优化,在处理复杂编程任务方面表现出色。 #### 开源模型 Qwen-2.5-Coder 及其变体 特别值得注意的是 Qwen-2.5-Coder 系列中的不同版本,它们不仅适用于基础编码辅助,而且通过特定的数据集测试验证了其有效性。特别是当涉及到代码生成时,基于 MBPP-3shot 指标的评估显示该类模型具有良好的表现力;而对于指令跟随能力,则可以通过 LiveCodeBench 测试进一步确认其实战效能[^2]。 ```python import qwen_coder as qc model = qc.load_model('qwen-2.5-coder') output = model.generate_code(prompt="编写一段Python程序来计算斐波那契数列") print(output) ``` #### DeepSeek-V3 当前开源领域内领先的模态对话理解框架之一——DeepSeek-V3 也值得考虑加入到 Cline 工具链当中。此模型以其卓越的表现超越了许其他竞争对手,并且接近甚至匹敌某些顶级私有化解决方案的质量水平[^3]。 #### 结合 Cline 特性的最佳实践方案 鉴于 Cline 是一款专为 Visual Studio Code 设计并带有强大 AI 功能插件的产品特性,结合上述提到的各种优秀模型,尤其是那些专门为软件开发场景定制过的实(如 Qwen-2.5-Coder),将会极大地提升用户体验和工作效率[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值