机器视觉中为什么需要畸变校正和预处理?

首先说说什么是畸变,一般来说,镜头畸变实际上是光学透镜固有的透视失真的总称,也就是因为透视原因造成的失真。

可以简单的分为镜像畸变和线性畸变。径向畸变就是沿着透镜半径方向分布的畸变,产生原因是光线在远离透镜中心的地方比靠近中心的地方更加弯曲。如下图

机器视觉中为什么需要畸变校正和预处理?

枕形畸变,在使用长焦镜头时,容易出现。

机器视觉中为什么需要畸变校正和预处理?

桶形畸变,在使用广角镜头时,容易出现。

线性畸变是由于透镜本身与相机传感器平面(成像平面)或图像平面不平行而产生的,这种情况多是由于透镜被粘贴到镜头模组上的安装偏差导致。如下图

机器视觉中为什么需要畸变校正和预处理?

线性畸变

那什么是预处理呢?预处理就是图像的前期处理。像彩色转灰、直方图均衡、灰度反转、调整对比度、光照校正等,用于整体的图像效果调整。污点修补、二值化图像、形态学变换、图像运算、图像填充、颜色提取等,用于提取/消除部分图像特征。

了解了什么是畸变校正和图像预处理,那么也就明白了机器视觉中为什么需要畸变校正和预处理。因为图像质量的好坏直接影响识别算法的设计与效果的精度,因此在图像分析(特征提取、分割、匹配和识别等)前,需要进行预处理。图像预处理的主要目的是消除图像中无关的信息,恢复有用的真实信息,增强有关信息的可检测性、最大限度地简化数据,从而改进特征提取、图像分割、匹配和识别的可靠性。

马克拉伯免费机器视觉软件SGVision在畸变校正和图像预处理方面功能是比较强大的。软件操作简单,集成化系统,无需编程,只需简单设置即可完成一个项目。特别适合初学者。内置数百种算法,在预处理方面有彩色转灰、直方图均值、灰度反转、调整对比度、污点修补、二值化图像、形态学变换、图像运算、光照校正、图像校正、颜色提取共11种算法,能满足大部分需求。

机器视觉中为什么需要畸变校正和预处理?

畸变校正

机器视觉中为什么需要畸变校正和预处理?

预处理彩色转灰

机器视觉中为什么需要畸变校正和预处理?

预处理灰度反转

SGVision功能模块涉及到目前机器视觉检测与应用的各个方面,已在电子、汽车、医疗、物流、能源、印刷等多个行业的各道工序成功应用。同时配我们的基础实验套装可满足教学与实验的需要。

主要功能:
外观缺陷检测、脏点污点检测、文字识别、二维码检测、有无检测、正反检测、尺寸测量、颜色识别、面积角度测量、视觉定位抓取、视觉定位贴合、与plc机器人通讯进行引导、并且包含2D线扫
公司自主开发永久免费授权给所有用户使用,无任何硬件绑定,可离线使用。

软件支持WIN7/WIN8/WIN10以上的 64位操作系统,建议选择I5及以上CPU,4G以上内存。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值